Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.675
Filter
1.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1159-1165, 2024 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-38977346

ABSTRACT

OBJECTIVE: To investigate the effect of Porphyromonas gingivalis (Pg) infection on immune escape of oesophageal cancer cells and the role of YTHDF2 and Fas in this regulatory mechanism. METHODS: We examined YTHDF2 and Fas protein expressions in esophageal squamous cell carcinoma (ESCC) tissues with and without Pg infection using immunohistochemistry and in Pg-infected KYSE150 cells using Western blotting. The interaction between YTHDF2 and Fas was investigated by co-immunoprecipitation (Co-IP). Pg-infected KYSE150 cells with lentivirus-mediated YTHDF2 knockdown were examined for changes in expression levels of YTHDF2, cathepsin B (CTSB), Fas and FasL proteins, and the effect of E64 (a cathepsin inhibitor) on these proteins were observed. After Pg infection and E64 treatment, KYSE150 cells were co-cultured with human peripheral blood mononuclear cells (PBMCs), and the expressions of T cell-related effector molecules were detected by flow cytometry. RESULTS: ESCC tissues and cells with Pg infection showed significantly increased YTHDF2 expression and lowered Fas expression. The results of Co-IP demonstrated a direct interaction between YTHDF2 and Fas. In Pg-infected KYSE150 cells with YTHDF2 knockdown, the expression of CTSB was significantly reduced while Fas and FasL expressions were significantly increased. E64 treatment of KYSE150 cells significantly decreased the expression of CTSB without affecting YTHDF2 expression and obviously increased Fas and FasL expressions. Flow cytometry showed that in Pg-infected KYSE150 cells co-cultured with PBMCs, the expressions of Granzyme B and Ki67 were significantly decreased while PD-1 expression was significantly enhanced. CONCLUSION: Pg infection YTHDF2-dependently regulates the expression of Fas to facilitate immune escape of esophageal cancer and thus promoting cancer progression, suggesting the key role of YTHDF2 in regulating immune escape of esophageal cancer.


Subject(s)
Esophageal Neoplasms , Porphyromonas gingivalis , RNA-Binding Proteins , fas Receptor , Humans , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Esophageal Neoplasms/immunology , Esophageal Neoplasms/metabolism , Cell Line, Tumor , fas Receptor/metabolism , Bacteroidaceae Infections/immunology , Bacteroidaceae Infections/metabolism , Bacteroidaceae Infections/microbiology , Esophageal Squamous Cell Carcinoma/immunology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Fas Ligand Protein/metabolism , Tumor Escape
2.
BMC Pharmacol Toxicol ; 25(1): 36, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943212

ABSTRACT

Chalcones and dihydrochalcones (DHCs) are important bioactive natural products (BNPs) isolated from traditional Chinese medicine. In this study, 13 chalcones were designed with the inspiration of Loureirin, a DHC extracted from Resina Draconis, and synthesized by classical Claisen-Schmidt reactions. Afterwards the reduction reactions were carried out to obtain the corresponding DHCs. Cytotoxicity assay indicated chalcones and DHCs possessed selective cytotoxicity against colorectal cancer (CRC) cells. The preliminary structure-activity relationships (SAR) of these compounds suggested the α, ß-unsaturated ketone of the chalcones were crucial for the anticancer activity. Interestingly, compounds 3d and 4c exhibited selective anticancer activity against CRC cell line HCT116 with IC50s of 8.4 and 17.9 µM but not normal cell. Moreover, 4c could also inhibit the migration and invasion of CRC cells. Mechanism investigations showed 4c could induce cell cycle G2/M arrest by regulating cell cycle-associated proteins and could also up-regulate Fas cell surface death receptor. The virtual docking further pointed out that compounds 3d and 4c could nicely bind to the Fas/FADD death domain complex (ID: 3EZQ). Furthermore, silencing of Fas significantly enhanced the proliferation of CRC cells and attenuated the cytotoxicity induced by 4c. These results suggested 4c exerted its anticancer activity possibly regulating cell cycle and Fas death receptor. In summary, this study investigated the anticancer activity and mechanism of Loureirin analogues in CRC, suggesting these compounds may warrant further investigation as promising anticancer drug candidates for the treatment of CRC.


Subject(s)
Antineoplastic Agents , Chalcones , Colorectal Neoplasms , fas Receptor , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Chalcones/pharmacology , Chalcones/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , fas Receptor/metabolism , Structure-Activity Relationship , HCT116 Cells , Molecular Docking Simulation , Cell Movement/drug effects , Cell Cycle/drug effects , Cell Line, Tumor
3.
Cell Death Dis ; 15(6): 440, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909035

ABSTRACT

The transmembrane death receptor Fas transduces apoptotic signals upon binding its ligand, FasL. Although Fas is highly expressed in cancer cells, insufficient cell surface Fas expression desensitizes cancer cells to Fas-induced apoptosis. Here, we show that the increase in Fas microaggregate formation on the plasma membrane in response to the inhibition of endocytosis sensitizes cancer cells to Fas-induced apoptosis. We used a clinically accessible Rho-kinase inhibitor, fasudil, that reduces endocytosis dynamics by increasing plasma membrane tension. In combination with exogenous soluble FasL (sFasL), fasudil promoted cancer cell apoptosis, but this collaborative effect was substantially weaker in nonmalignant cells. The combination of sFasL and fasudil prevented glioblastoma cell growth in embryonic stem cell-derived brain organoids and induced tumor regression in a xenograft mouse model. Our results demonstrate that sFasL has strong potential for apoptosis-directed cancer therapy when Fas microaggregate formation is augmented by mechano-inhibition of endocytosis.


Subject(s)
Apoptosis , Endocytosis , Fas Ligand Protein , fas Receptor , Humans , Endocytosis/drug effects , Apoptosis/drug effects , Animals , Fas Ligand Protein/metabolism , fas Receptor/metabolism , Mice , Cell Line, Tumor , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Xenograft Model Antitumor Assays , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/drug therapy
4.
Int J Pharm ; 660: 124349, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38885778

ABSTRACT

The clinical application of doxorubicin (DOX) is mainly restricted by its serious side effects, poor drug delivery efficiency, and limited immunogenic death (ICD) effect. To improve DOX-based chemotherapy and ameliorate its adverse effects, we utilized 3LL cell-derived extracellular vesicles to encapsulate DOX and sodium nitroprusside (SNP) to obtain DOX/SNP@CM, which could effectively target the tumor site by harnessing the inherent homologous targeting property of tumor cell membranes. DOX performed its role on chemotherapy, and SNP successfully respond to the intracellular GSH to continuously generate nitric oxide (NO). The in situ-produced NO upregulated the Fas expression on the tumor cell surface, thereby sensitizing the Fas/FasL pathway-mediated tumor cell apoptosis of DOX. Furthermore, NO also boosted the intratumoral infiltration of cytotoxic T cells by promoted ICD effect towards tumor cells. Importantly, the anti-tumor immunity tightly cooperated with Fas/FasL mediated tumor cell apoptosis by NO-mediated manipulation on Fas/FasL interaction, collectively making DOX/SNP@CM exert significant tumor growth inhibition with low-dose DOX. Remarkably, DOX and SNP both are widely used clinical medicines, ensuring DOX/SNP@CM a potential opportunity for future practical applications.


Subject(s)
Antibiotics, Antineoplastic , Apoptosis , Doxorubicin , Extracellular Vesicles , Fas Ligand Protein , Nitroprusside , fas Receptor , Doxorubicin/administration & dosage , Doxorubicin/pharmacology , Fas Ligand Protein/metabolism , fas Receptor/metabolism , Animals , Nitroprusside/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Mice , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Nitric Oxide/metabolism , Immunotherapy/methods , Mice, Inbred C57BL , Female , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/immunology , Humans , Signal Transduction/drug effects , Mice, Inbred BALB C , Drug Delivery Systems/methods
5.
Sports Med Arthrosc Rev ; 32(1): 12-16, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38695498

ABSTRACT

Rotator cuff repair is usually successful, but retear is not uncommon. It has been previously identified that there is a higher incidence of apoptosis in the edges of the torn supraspinatus tendon. A prospective cohort study was conducted with 28 patients-14 rotator cuff tear patients, 5 instability patients, and 9 Anterior cruciate ligament reconstruction patients to determine whether there was any increase in several genes implicated in apoptosis, including Fas receptor (FasR), Fas ligand, Aifm-1, Bcl-2, Fadd, Bax, and caspase-3. There was a significant expression of Bax (P=0.2) and FasR (P=0.005) in the edges of torn supraspinatus tendons, and in intact subscapularis tendons, there was a significant expression of caspase-3 (P=0.02) compared with samples from the torn supraspinatus tendon (P=0.04). The cytochrome c pathway, with its subsequent activation of caspase-3, as well as the TRAIL-receptor signaling pathway involving FasR have both been implicated. The elevated expression of Bax supported the model that the Bax to Bcl-2 expression ratio represents a cell death switch. The elevated expression of Bax in the intact subscapularis tissue from rotator cuff tear patients also may confirm that tendinopathy is an ongoing molecular process.


Subject(s)
Apoptosis , Rotator Cuff Injuries , Tendinopathy , Humans , Rotator Cuff Injuries/metabolism , Rotator Cuff Injuries/surgery , Rotator Cuff Injuries/pathology , Tendinopathy/pathology , Tendinopathy/metabolism , Prospective Studies , Male , bcl-2-Associated X Protein/metabolism , Female , fas Receptor/metabolism , Caspase 3/metabolism , Rotator Cuff/pathology , Rotator Cuff/metabolism , Middle Aged , Signal Transduction , Adult
6.
Nat Commun ; 15(1): 4227, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762592

ABSTRACT

Multisystem inflammatory syndrome in children is a post-infectious presentation SARS-CoV-2 associated with expansion of the T cell receptor Vß21.3+ T-cell subgroup. Here we apply muti-single cell omics to compare the inflammatory process in children with acute respiratory COVID-19 and those presenting with non SARS-CoV-2 infections in children. Here we show that in Multi-Inflammatory Syndrome in Children (MIS-C), the natural killer cell and monocyte population demonstrate heightened CD95 (Fas) and Interleuking 18 receptor expression. Additionally, TCR Vß21.3+ CD4+ T-cells exhibit skewed differentiation towards T helper 1, 17 and regulatory T cells, with increased expression of the co-stimulation receptors ICOS, CD28 and interleukin 18 receptor. We observe no functional evidence for NLRP3 inflammasome pathway overactivation, though MIS-C monocytes show elevated active caspase 8. This, coupled with raised IL18 mRNA expression in CD16- NK cells on single cell RNA sequencing analysis, suggests interleukin 18 and CD95 signalling may trigger activation of TCR Vß21.3+ T-cells in MIS-C, driven by increased IL-18 production from activated monocytes and CD16- Natural Killer cells.


Subject(s)
COVID-19 , Interleukin-18 , Killer Cells, Natural , Monocytes , Signal Transduction , Systemic Inflammatory Response Syndrome , fas Receptor , Humans , Interleukin-18/metabolism , Child , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , fas Receptor/metabolism , fas Receptor/genetics , Monocytes/immunology , Monocytes/metabolism , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/metabolism , COVID-19/immunology , COVID-19/virology , COVID-19/metabolism , COVID-19/complications , Inflammasomes/metabolism , Inflammasomes/immunology , SARS-CoV-2/immunology , Adolescent , Male , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Female , Child, Preschool , Single-Cell Analysis , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD28 Antigens/metabolism , Lymphocyte Activation/immunology , Receptors, Interleukin-18/metabolism , Receptors, Interleukin-18/genetics , Receptors, Interleukin-18/immunology
7.
Cell Death Dis ; 15(5): 315, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704374

ABSTRACT

Autoimmune lymphoproliferative syndrome (ALPS) is a primary disorder of lymphocyte homeostasis, leading to chronic lymphoproliferation, autoimmune cytopenia, and increased risk of lymphoma. The genetic landscape of ALPS includes mutations in FAS, FASLG, and FADD, all associated with apoptosis deficiency, while the role of CASP10 defect in the disease remains debated. In this study, we aimed to assess the impact of CASP10 variants on ALPS pathogenesis. We benefit from thousands of genetic analysis datasets performed in our Institute's genetic platform to identify individuals carrying CASP10 variants previously suspected to be involved in ALPS outcome: p.C401LfsX15, p.V410I and p.Y446C, both at heterozygous and homozygous state. Clinical and laboratory features of the six included subjects were variable but not consistent with ALPS. Two individuals were healthy. Comprehensive analyses of CASP10 protein expression and FAS-mediated apoptosis were conducted and compared to healthy controls and ALPS patients with FAS mutations. Missense CASP10 variants (p.V410I and p.Y446C), which are common in the general population, did not disrupt CASP10 expression, nor FAS-mediated apoptosis. In contrast, homozygous p.C401LfsX15 CASP10 variant lead to a complete abolished CASP10 expression but had no impact on FAS-mediated apoptosis function. At heterozygous state, this p.C401LfsX15 variant lead to a reduced CASP10 protein levels but remained associated with a normal FAS-mediated apoptosis function. These findings demonstrate that CASPASE 10 is dispensable for FAS-mediated apoptosis. In consequences, CASP10 defect unlikely contribute to ALPS pathogenesis, since they did not result in an impairment of FAS-mediated apoptosis nor in clinical features of ALPS in human. Moreover, the absence of FAS expression up-regulation in subjects with CASP10 variants rule out any compensatory mechanisms possibly involved in the normal apoptosis function observed. In conclusion, this study challenges the notion that CASP10 variants contribute to the development of ALPS.


Subject(s)
Apoptosis , Autoimmune Lymphoproliferative Syndrome , Caspase 10 , Mutation , fas Receptor , Humans , Caspase 10/genetics , Caspase 10/metabolism , Autoimmune Lymphoproliferative Syndrome/genetics , Male , Female , Mutation/genetics , Apoptosis/genetics , fas Receptor/genetics , fas Receptor/metabolism , Adult , Child , Adolescent , Middle Aged
8.
Dev Comp Immunol ; 157: 105191, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38705263

ABSTRACT

Ficus hirta Vahl. (FhV) has been shown to have antimicrobial and antiviral efficacy. To further ascertain the pharmacological properties of FhV., and to search for alternatives to antibiotics. An in vitro experiment was carried out to evaluate what influence FhV. would have on LPS-induced apoptosis. In this study, Fas, an apoptosis receptor, was cloned, which included a 5'-UTR of 39 bp, an ORF of 951 bp, a protein of 316 amino acids, and a 3'-UTR of 845 bp. EcFas was most strongly expressed in the spleen tissue of orange-spotted groupers. In addition, the apoptosis of fish spleen cells induced by LPS was concentration-dependent. Interestingly, appropriate concentrations of FhV. alleviated LPS-induced apoptosis. Inhibition of miR-411 further decreased the inhibitory effect of Fas on apoptosis, which reduced Bcl-2 expression and mitochondrial membrane potential, enhanced the protein expression of Bax and Fas. More importantly, the FhV. could activate miR-411 to improve this effect. In addition, luciferase reporter assays showed that miR-411 binds to Fas 3'-UTR to inhibit Fas expression. These findings provide evidence that FhV. alleviates LPS-induced apoptosis by activating miR-411 to inhibit Fas expression and, therefore, provided possible strategies for bacterial infections in fish.


Subject(s)
Apoptosis , Fish Proteins , Lipopolysaccharides , MicroRNAs , Spleen , Animals , Apoptosis/drug effects , Lipopolysaccharides/immunology , MicroRNAs/genetics , MicroRNAs/metabolism , Spleen/metabolism , Spleen/immunology , Fish Proteins/metabolism , Fish Proteins/genetics , fas Receptor/metabolism , fas Receptor/genetics , Fish Diseases/immunology , Down-Regulation , Bass/immunology , Bass/genetics , Cells, Cultured , 3' Untranslated Regions/genetics , Perciformes/immunology
9.
Virchows Arch ; 484(6): 925-937, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38748263

ABSTRACT

High-grade osteosarcoma, a primary malignant bone tumour, is experiencing a global increase in reported incidence with varied prevalence. Despite advances in management, which include surgery and neoadjuvant chemotherapy often an unsatisfactory outcome is found due to poor or heterogeneous response to chemotherapy. Our study delved into chemotherapy responses in osteosarcoma patients and associated molecular expressions, focusing on CD95 receptor (CD95R), interferon (IFN)-γ, catalase, heat-shock protein (Hsp)70, and vascular endothelial growth factor (VEGF). Employing immunohistochemistry and Huvos grading of post-chemo specimens, we analysed formalin-fixed paraffin-embedded (FFPE) osteosarcoma tissue of resected post-chemotherapy specimens from Dr. Soetomo General Academic Hospital in Surabaya, Indonesia (DSGAH), spanning from 2016 to 2020. Results revealed varied responses (poor 40.38%, moderate 48.08%, good 11.54%) and distinct patterns in CD95R, IFN-γ, catalase, Hsp70, and VEGF expression. Significant differences among response groups were observed in CD95R and IFN-γ expression in tumour-infiltrating lymphocytes. The trend of diminishing CD95R expression from poor to good responses, accompanied by an increase in IFN-γ, implied a reduction in the count of viable osteosarcoma cells with the progression of Huvos grading. Catalase expression in osteosarcoma cells was consistently elevated in the poor response group, while Hsp70 expression was highest. VEGF expression in macrophages was significantly higher in the good response group. In conclusion, this study enhances our understanding of immune-chemotherapy interactions in osteosarcoma and identifies potential biomarkers for targeted interventions.


Subject(s)
Bone Neoplasms , Catalase , HSP70 Heat-Shock Proteins , Interferon-gamma , Osteosarcoma , Vascular Endothelial Growth Factor A , fas Receptor , Osteosarcoma/pathology , Osteosarcoma/drug therapy , Osteosarcoma/metabolism , Osteosarcoma/immunology , Humans , Vascular Endothelial Growth Factor A/metabolism , Female , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Bone Neoplasms/immunology , Male , HSP70 Heat-Shock Proteins/metabolism , Catalase/metabolism , Young Adult , Adult , fas Receptor/metabolism , fas Receptor/analysis , Adolescent , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Neoplasm Grading , Child , Treatment Outcome , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , Middle Aged
10.
In Vivo ; 38(3): 1512-1518, 2024.
Article in English | MEDLINE | ID: mdl-38688598

ABSTRACT

BACKGROUND/AIM: Progressive fibrosing interstitial lung disease (PF-ILD) refers to a group of chronic lung conditions commonly associated with immunoglobulin G4-related disorders. It is characterized by progressive scarring (fibrosis) within the pulmonary interstitium, resulting in respiratory failure and early mortality. Some patients do not respond to standard therapeutic interventions. Numerous studies have confirmed the anti-inflammatory and antioxidant properties of molecular hydrogen in various disease models. CASE REPORT: In this report, we present a case study of an 85-year-old female diagnosed with suspected IgG4-related PF-ILD complicated by hospital-acquired pneumonia. On the fourth day of hydrogen-assisted therapy, a noticeable improvement in lung infiltrations was observed in chest X-rays as the patient gradually progressed towards weaning off mechanical ventilation. To assess treatment responses, we compared immune phenotypes before and after hydrogen treatment. A marked increase was observed in resting regulatory T cell levels after treatment, accompanied by a notable decrease in Fas+ helper T cell and cytotoxic T cell subtypes. CONCLUSION: This case study highlights the effectiveness of hydrogen-assisted therapy in managing PF-ILD complicated by pneumonia, warranting further research in the future.


Subject(s)
Hydrogen , Immunoglobulin G , Lung Diseases, Interstitial , T-Lymphocytes, Regulatory , Humans , Female , Aged, 80 and over , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/immunology , Lung Diseases, Interstitial/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , fas Receptor/metabolism , Treatment Outcome
11.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 164-168, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678607

ABSTRACT

This study aimed to explore the effects of miR-129-5p on inflammation and nucleus pulposus (NP) cell apoptosis in rats with intervertebral disc degeneration (IVDD) through the c-Jun N-terminal kinase (JNK) signaling pathway. A total of 20 rats were randomly divided into control group (n=10) or IVDD group (n=10). The mRNA expressions of miR-129-5p and apoptosis index Fas in IVDD tissues were determined using RT-PCR. NP cell apoptosis rate was detected via TUNEL assay. NP cells were extracted from IVDD tissues for primary culture. Subsequently, the cells were transfected with miR-129-5p inhibitor or mimic to inhibit or overexpress miR-129-5p, respectively. Furthermore, the changes in the JNK pathway indexes and apoptosis indexes were detected using Western blotting. In IVDD group, the expression of miR-129-5p was significantly down-regulated, while the transcriptional level of Fas was up-regulated compared with those in control group. Pearson correlation analysis revealed a negative correlation between the expressions of miR-129-5p and Fas mRNA (r=-0.75, P<0.05). IVDD group exhibited significantly higher levels of serum TNF-α, IL-6 and IL-1 than control group. Subsequent TUNEL assay indicated that the apoptosis rate was evidently higher in IVDD group (60.6%) than control group (2.5%). The results of Western blotting showed that the protein expressions of JNK1, JNK2 and Fas remarkably rose in IVDD group compared with those in control group. However, they declined remarkably in miR-129-5p mimic group compared with those in control group. Furthermore, such trends were significantly reversed in miR-129-5p inhibitor group. MiR-129-5p was significantly down-regulated in IVDD, whose overexpression has anti-inflammatory and anti-apoptotic effects.


Subject(s)
Apoptosis , Inflammation , Intervertebral Disc Degeneration , MAP Kinase Signaling System , MicroRNAs , Nucleus Pulposus , Rats, Sprague-Dawley , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Apoptosis/genetics , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Inflammation/genetics , Inflammation/pathology , MAP Kinase Signaling System/genetics , Male , Rats , fas Receptor/genetics , fas Receptor/metabolism
13.
Blood Adv ; 8(12): 3064-3075, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38593227

ABSTRACT

ABSTRACT: Although significant progress has been made in understanding the genetic basis of primary hemophagocytic lymphohistiocytosis (HLH), the pathogenesis of secondary HLH, the more prevalent form, remains unclear. Among the various conditions giving rise to secondary HLH, HLH in patients with lymphoma (HLH-L) accounts for a substantial proportion. In this study, we investigated the role of somatic mutations in the pathogenesis of HLH-L in a cohort of patients with T- and/or natural killer-cell lymphoma. We identified a 3-time higher frequency of mutations in FAS pathway in patients with HLH-L. Patients harboring these mutations had a 5-time increased HLH-L risk. These mutations were independently associated with inferior outcome. Hence, our study demonstrates the association between somatic mutations in FAS pathway and HLH-L. Further studies are warranted on the mechanistic role of these mutations in HLH-L.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Mutation , fas Receptor , Humans , Lymphohistiocytosis, Hemophagocytic/genetics , Lymphohistiocytosis, Hemophagocytic/etiology , fas Receptor/genetics , Female , Male , Middle Aged , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/complications , Adult , Signal Transduction , Killer Cells, Natural/metabolism , Aged , Genetic Predisposition to Disease
14.
Nat Mater ; 23(7): 993-1001, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38594486

ABSTRACT

DNA origami is capable of spatially organizing molecules into sophisticated geometric patterns with nanometric precision. Here we describe a reconfigurable, two-dimensional DNA origami with geometrically patterned CD95 ligands that regulates immune cell signalling to alleviate rheumatoid arthritis. In response to pH changes, the device reversibly transforms from a closed to an open configuration, displaying a hexagonal pattern of CD95 ligands with ~10 nm intermolecular spacing, precisely mirroring the spatial arrangement of CD95 receptor clusters on the surface of immune cells. In a collagen-induced arthritis mouse model, DNA origami elicits robust and selective activation of CD95 death-inducing signalling in activated immune cells located in inflamed synovial tissues. Such localized immune tolerance ameliorates joint damage with no noticeable side effects. This device allows for the precise spatial control of cellular signalling, expanding our understanding of ligand-receptor interactions and is a promising platform for the development of pharmacological interventions targeting these interactions.


Subject(s)
Arthritis, Rheumatoid , DNA , Immune Tolerance , Signal Transduction , fas Receptor , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Animals , DNA/chemistry , DNA/immunology , Mice , fas Receptor/metabolism , fas Receptor/immunology , Fas Ligand Protein/metabolism , Fas Ligand Protein/immunology , Humans
15.
Int J Mol Sci ; 25(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38542202

ABSTRACT

Fas-associated death domain (FADD) is an adaptor protein that predominantly transduces the apoptosis signal from the death receptor (DR) to activate caspases, leading to the initiation of apoptotic signaling and the coordinated removal of damaged, infected, or unwanted cells. In addition to its apoptotic functions, FADD is involved in signaling pathways related to autophagy, cell proliferation, necroptosis, and cellular senescence, indicating its versatile role in cell survival and proliferation. The subcellular localization and intracellular expression of FADD play a crucial role in determining its functional outcomes, thereby highlighting the importance of spatiotemporal mechanisms and regulation. Furthermore, FADD has emerged as a key regulator of inflammatory signaling, contributing to immune responses and cellular homeostasis. This review provides a comprehensive summary and analysis of the cellular dynamics of FADD in regulating programmed cell death and inflammation through distinct molecular mechanisms associated with various signaling pathways.


Subject(s)
Apoptosis , Neoplasms , Humans , Death Domain , Fas-Associated Death Domain Protein/metabolism , Apoptosis/physiology , fas Receptor/metabolism , Inflammation , Caspase 8/metabolism
16.
Chemistry ; 30(24): e202400120, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38363216

ABSTRACT

Controlled cell death is essential for the regulation of the immune system and plays a role in pathogen defense. It is often altered in pathogenic conditions such as cancer, viral infections and autoimmune diseases. The Fas receptor and its corresponding membrane-bound ligand (FasL) are part of the extrinsic apoptosis pathway activated in these cases. A soluble form of FasL (sFasL), produced by ectodomain shedding, displays a diverse but still elusive set of non-apoptotic functions and sometimes even serves as a pro-survival factor. To gather more knowledge about the characteristics of this protein and the impact N-glycosylations may have, access to homogeneous posttranslationally modified variants of sFasL is needed. Therefore, we developed a flexible strategy to obtain such homogeneously N-glycosylated variants of sFasL by applying chemical protein synthesis. This strategy can be flexibly combined with enzymatic methods to introduce more complex, site selective glycosylations.


Subject(s)
Fas Ligand Protein , Apoptosis , Fas Ligand Protein/metabolism , Fas Ligand Protein/chemistry , fas Receptor/metabolism , fas Receptor/chemistry , Glycosylation , Protein Processing, Post-Translational , Solubility
17.
Gastroenterology ; 167(2): 343-356, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38342194

ABSTRACT

BACKGROUND & AIMS: Apoptosis generates plenty of membrane-bound nanovesicles, the apoptotic vesicles (apoVs), which show promise for biomedical applications. The liver serves as a significant organ for apoptotic material removal. Whether and how the liver metabolizes apoptotic vesicular products and contributes to liver health and disease is unrecognized. METHODS: apoVs were labeled and traced after intravenous infusion. Apoptosis-deficient mice by Fas mutant (Fasmut) and Caspase-3 knockout (Casp3-/-) were used with apoV replenishment to evaluate the physiological apoV function. Combinations of morphologic, biochemical, cellular, and molecular assays were applied to assess the liver while hepatocyte analysis was performed. Partial hepatectomy and acetaminophen liver failure models were established to investigate liver regeneration and disease recovery. RESULTS: We discovered that the liver is a major metabolic organ of circulatory apoVs, in which apoVs undergo endocytosis by hepatocytes via a sugar recognition system. Moreover, apoVs play an indispensable role to counteract hepatocellular injury and liver impairment in apoptosis-deficient mice upon replenishment. Surprisingly, apoVs form a chimeric organelle complex with the hepatocyte Golgi apparatus through the soluble N-ethylmaleimide-sensitive factor attachment protein receptor machinery, which preserves Golgi integrity, promotes microtubule acetylation by regulating α-tubulin N-acetyltransferase 1, and consequently facilitates hepatocyte cytokinesis for liver recovery. The assembly of the apoV-Golgi complex is further revealed to contribute to liver homeostasis, regeneration, and protection against acute liver failure. CONCLUSIONS: These findings establish a previously unrecognized functional and mechanistic framework that apoptosis through vesicular metabolism safeguards liver homeostasis and regeneration, which holds promise for hepatic disease therapeutics.


Subject(s)
Apoptosis , Hepatocytes , Homeostasis , Liver Regeneration , Liver , Mice, Knockout , Animals , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/metabolism , Liver/pathology , Caspase 3/metabolism , Mice , Hepatectomy , Disease Models, Animal , fas Receptor/metabolism , fas Receptor/genetics , Golgi Apparatus/metabolism , Endocytosis , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , Mice, Inbred C57BL , Acetaminophen , Male
18.
J Allergy Clin Immunol ; 153(1): 67-76, 2024 01.
Article in English | MEDLINE | ID: mdl-37977527

ABSTRACT

Chronic nonmalignant lymphoproliferation and autoimmune cytopenia are relevant manifestations of immunohematologic diseases of childhood. Their diagnostic classification is challenging but important for therapy. Autoimmune lymphoproliferative syndrome (ALPS) is a genetically defined inborn error of immunity combining these manifestations, but it can explain only a small proportion of cases. Diagnostic categories such as ALPS-like disease, common variable immunodeficiency, or Evans syndrome have therefore been used. Advances in genetics and increasing availablity of targeted therapies call for more therapy-oriented disease classification. Moreover, recent discoveries in the (re)analysis of genetic conditions affecting FAS signaling ask for a more precise definition of ALPS. In this review, we propose the term autoimmune lymphoproliferative immunodeficiencies for a disease phenotype that is enriched for patients with genetic diseases for which targeted therapies are available. For patients without a current molecular diagnosis, this term defines a subgroup of immune dysregulatory disorders for further studies. Within the concept of autoimmune lymphoproliferative immunodeficiencies, we propose a revision of the ALPS classification, restricting use of this term to conditions with clear evidence of perturbation of FAS signaling and resulting specific biologic and clinical consequences. This proposed approach to redefining ALPS and other lymphoproliferative conditions provides a framework for disease classification and diagnosis that is relevant for the many specialists confronted with these diseases.


Subject(s)
Anemia, Hemolytic, Autoimmune , Autoimmune Diseases , Autoimmune Lymphoproliferative Syndrome , Common Variable Immunodeficiency , Immune System Diseases , Lymphoproliferative Disorders , Humans , Autoimmune Lymphoproliferative Syndrome/diagnosis , Autoimmune Lymphoproliferative Syndrome/genetics , Autoimmune Lymphoproliferative Syndrome/therapy , Phenotype , fas Receptor/genetics , Lymphoproliferative Disorders/diagnosis , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/therapy
19.
J Allergy Clin Immunol ; 153(1): 203-215, 2024 01.
Article in English | MEDLINE | ID: mdl-37793571

ABSTRACT

BACKGROUND: The autoimmune lymphoproliferative syndrome (ALPS) is a noninfectious and nonmalignant lymphoproliferative disease frequently associated with autoimmune cytopenia resulting from defective FAS signaling. We previously described germline monoallelic FAS (TNFRSF6) haploinsufficient mutations associated with somatic events, such as loss of heterozygosity on the second allele of FAS, as a cause of ALPS-FAS. These somatic events were identified by sequencing FAS in DNA from double-negative (DN) T cells, the pathognomonic T-cell subset in ALPS, in which the somatic events accumulated. OBJECTIVE: We sought to identify whether a somatic event affecting the FAS-associated death domain (FADD) gene could be related to the disease onset in 4 unrelated patients with ALPS carrying a germline monoallelic mutation of the FADD protein inherited from a healthy parent. METHODS: We sequenced FADD and performed array-based comparative genomic hybridization using DNA from sorted CD4+ or DN T cells. RESULTS: We found homozygous FADD mutations in the DN T cells from all 4 patients, which resulted from uniparental disomy. FADD deficiency caused by germline heterozygous FADD mutations associated with a somatic loss of heterozygosity was a phenocopy of ALPS-FAS without the more complex symptoms reported in patients with germline biallelic FADD mutations. CONCLUSIONS: The association of germline and somatic events affecting the FADD gene is a new genetic cause of ALPS.


Subject(s)
Autoimmune Lymphoproliferative Syndrome , Fas-Associated Death Domain Protein , Humans , Apoptosis/genetics , Autoimmune Diseases/genetics , Autoimmune Lymphoproliferative Syndrome/genetics , Comparative Genomic Hybridization , DNA , fas Receptor/genetics , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Germ Cells/pathology , Mutation
20.
Apoptosis ; 29(1-2): 1-2, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37794219

ABSTRACT

Fas and Fas ligand (FasL)-induced cell death is critical for the appropriate regulation of immune responses, especially those mediated by T cells. In this letter, several studies are discussed that reinforce the importance of FasL intracellular signaling for CD4 + T cell death, which might involve PSTPIP phosphatase and/or MAPKs.


Subject(s)
Apoptosis , fas Receptor , Fas Ligand Protein/genetics , Signal Transduction , Cell Death
SELECTION OF CITATIONS
SEARCH DETAIL
...