Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 838
Filter
1.
Eur J Med Chem ; 275: 116631, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38954961

ABSTRACT

Protein kinases (PKs) including RAF, perform a principal role in regulating countless cellular events such as cell growth, differentiation, and angiogenesis. Overexpression and mutation of RAF kinases are significant contributors to the development and spread of cancer. Therefore, RAF kinase inhibitors show promising outcomes as anti-cancer small molecules by suppressing the expression of RAF protein, blocking RAS/RAF interaction, or inhibiting RAF enzymes. Currently, there are insufficient reports about approving drugs with minimal degree of toxicity. Therefore, it is an urgent need to develop new RAF kinase inhibitors correlated with increased anticancer activity and lower cytotoxicity. This review outlines reported RAF kinase inhibitors for cancer treatment in patents and literature from 2019 to 2023. It highlights the available inhibitors by shedding light on their chemical structures, biochemical profiles, and current status. Additionally, we highlighted the hinge region-binding moiety of the reported compounds by showing the hydrogen bond patterns of representative inhibitors with the hinge region for each class. In recent years, RAF kinase inhibitors have gained considerable attention in cancer research and drug development due to their potential to be studied under clinical trials and their demonstration of various degrees of efficacy and safety profiles across different cancer types. However, addressing challenges related to drug resistance and safety represents a major avenue for the optimization and enhancement of RAF kinase inhibitors. Strategies to overcome such obstacles were discussed such as developing novel pan-RAF inhibitors, RAF dimer inhibitors, and combination treatments.


Subject(s)
Antineoplastic Agents , Neoplasms , Protein Kinase Inhibitors , raf Kinases , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , raf Kinases/antagonists & inhibitors , raf Kinases/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Molecular Structure , Animals , Structure-Activity Relationship
2.
Cancer Discov ; 14(7): 1143-1144, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38946324

ABSTRACT

In this issue, Ryan and colleagues describe the preclinical development of a pan-RAF:MEK molecular glue with superior efficacy, brain penetrance, and tolerability in xenograft models of Ras/Raf/MAPK pathway-driven tumors. See related article by Ryan et al., p. 1190 (1).


Subject(s)
Protein Kinase Inhibitors , Humans , Animals , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , raf Kinases/metabolism , raf Kinases/genetics , Mice , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasms/genetics , Neoplasms/metabolism
3.
Asian Pac J Cancer Prev ; 25(6): 2193-2201, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38918683

ABSTRACT

The alterations of EGFR and HER2/neu as growth factor receptors and the cytoplasmic signal transduction proteins of RAS/RAF/MAP kinases including its end effector molecule (ERK) are important in the carcinogenesis of many tumors. The activation of these protooncogenes in prostate cancer is still under investigation. The aim of this work was to study EGFR, HER2- neu, inactive (non-phosphorylated) and active (phosphorylated) ERK expression in prostatic adenocarcinomas in correlation to the clinical and pathological parameters. METHODS: Immunohistochemistry- using tissue microarrays- for EGFR, HER2/neu, non-phosphorylated, and phosphor-ERK, was performed on tissues from 166 patients- with primary prostatic adenocarcinoma with no prior treatment-. The results of different markers expression were correlated with the clinical and pathological parameters and were analyzed statistically. RESULTS: The prostatic tissue showed EGFR, HER2 neu, phosphorylated and non-phosphorylated ERK expression in 8.4%, 1.4%, 78.2%, and 83.4% respectively whether low (patchy) or high expression (diffuse).  There were no significant correlations found between patient characteristics and expression of the tested markers. The negative immune reactivity for non-phosphorylated ERK and EGFR- was significantly correlated with high tumor stage (p values 0.03 and 0.01, respectively). CONCLUSION: EGFR and HER2/neu may play a limited role in prostatic adenocarcinoma as they showed positive expression in a limited number of the examined tissues specifically HER2neu. The expression of non-phosphorylated ERK (mostly weak to moderate) and phosphorylated ERK (mostly moderate to strong)- was appreciated in most cases. Thus, we suggest that anti-EGFR drugs may have a limited role in the treatment of castrate-resistant prostate cancer, but anti-MEK/ERK drugs may have more promising role as a target therapy. It is recommended to perform further molecular testing to elucidate the exact mechanism and significance of these markers.


Subject(s)
Adenocarcinoma , Biomarkers, Tumor , ErbB Receptors , Prostatic Neoplasms , Receptor, ErbB-2 , Humans , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/drug therapy , ErbB Receptors/metabolism , Receptor, ErbB-2/metabolism , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/drug therapy , Biomarkers, Tumor/metabolism , Aged , Middle Aged , Prognosis , Phosphorylation , raf Kinases/metabolism , Follow-Up Studies , MAP Kinase Signaling System , ras Proteins/metabolism , Aged, 80 and over , Extracellular Signal-Regulated MAP Kinases/metabolism , Signal Transduction
4.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731852

ABSTRACT

Lung cancer, despite recent advancements in survival rates, represents a significant global health burden. Non-small cell lung cancer (NSCLC), the most prevalent type, is driven largely by activating mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) and receptor tyrosine kinases (RTKs), and less in v-RAF murine sarcoma viral oncogene homolog B (BRAF) and mitogen-activated protein-kinase kinase (MEK), all key components of the RTK-RAS-mitogen-activated protein kinase (MAPK) pathway. Learning from melanoma, the identification of BRAFV600E substitution in NSCLC provided the rationale for the investigation of RAF and MEK inhibition as a therapeutic strategy. The regulatory approval of two RAF-MEK inhibitor combinations, dabrafenib-trametinib, in 2017, and encorafenib-binimetinib, in 2023, signifies a breakthrough for the management of BRAFV600E-mutant NSCLC patients. However, the almost universal emergence of acquired resistance limits their clinical benefit. New RAF and MEK inhibitors, with distinct biochemical characteristics, are in preclinical and clinical development. In this review, we aim to provide valuable insights into the current state of RAF and MEK inhibition in the management of NSCLC, fostering a deeper understanding of the potential impact on patient outcomes.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mitogen-Activated Protein Kinase Kinases , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Animals , raf Kinases/antagonists & inhibitors , raf Kinases/metabolism , raf Kinases/genetics , Mutation
5.
Biochem Soc Trans ; 52(3): 1061-1069, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38695730

ABSTRACT

The RAF kinases are required for signal transduction through the RAS-RAF-MEK-ERK pathway, and their activity is frequently up-regulated in human cancer and the RASopathy developmental syndromes. Due to their complex activation process, developing drugs that effectively target RAF function has been a challenging endeavor, highlighting the need for a more detailed understanding of RAF regulation. This review will focus on recent structural and biochemical studies that have provided 'snapshots' into the RAF regulatory cycle, revealing structures of the autoinhibited BRAF monomer, active BRAF and CRAF homodimers, as well as HSP90/CDC37 chaperone complexes containing CRAF or BRAFV600E. In addition, we will describe the insights obtained regarding how BRAF transitions between its regulatory states and examine the roles that various BRAF domains and 14-3-3 dimers play in both maintaining BRAF as an autoinhibited monomer and in facilitating its transition to an active dimer. We will also address the function of the HSP90/CDC37 chaperone complex in stabilizing the protein levels of CRAF and certain oncogenic BRAF mutants, and in serving as a platform for RAF dephosphorylation mediated by the PP5 protein phosphatase. Finally, we will discuss the regulatory differences observed between BRAF and CRAF and how these differences impact the function of BRAF and CRAF as drivers of human disease.


Subject(s)
HSP90 Heat-Shock Proteins , Proto-Oncogene Proteins B-raf , Humans , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/chemistry , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins B-raf/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/chemistry , Protein Multimerization , raf Kinases/metabolism , raf Kinases/chemistry , Animals , Chaperonins/metabolism , Chaperonins/chemistry , Signal Transduction , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/chemistry , Neoplasms/enzymology , Neoplasms/metabolism , Neoplasms/genetics , Proto-Oncogene Proteins c-raf/metabolism , Proto-Oncogene Proteins c-raf/chemistry , Models, Molecular
6.
Mol Immunol ; 171: 105-114, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38820902

ABSTRACT

Chlamydia trachomatis (CT) is the leading cause of bacterial sexually transmitted diseases worldwide, which can cause diseases such as pelvic inflammatory disease, and cervical and fallopian tube inflammation, and poses a threat to human health. Rosmarinic acid (RosA) is an active ingredient of natural products with anti-inflammatory and immunomodulatory effects. This study aimed to investigate the role of RosA in inhibiting autophagy-regulated immune cells-CD8+ T cells via the Ras/Raf/MEK/ERK signaling pathway in a CT-infected mouse model. Mice were inoculated with CT infection solution vaginally, and the mechanistic basis of RosA treatment was established using H&E staining, flow cytometry, immunofluorescence, transmission electron microscopy, and western blot. The key factors involved in RosA treatment were further validated using the MEK inhibitor cobimetinib. Experimental results showed that both RosA and the reference drug azithromycin could attenuate the pathological damage to the endometrium caused by CT infection; flow cytometry showed that peripheral blood CD8+ T cells increased after CT infection and decreased after treatment with RosA and the positive drug azithromycin (positive control); immunofluorescence showed that endometrial CD8 and LC3 increased after CT infection and decreased after RosA and positive drug treatment; the results of transmission electron microscopy showed that RosA and the positive drug azithromycin inhibited the accumulation of autophagosomes; western bolt experiments confirmed the activation of autophagy proteins LC3Ⅱ/Ⅰ, ATG5, Beclin-1, and p62 after CT infection, as well as the inhibition of Ras/Raf/MEK/ERK signaling. RosA and azithromycin inhibition of autophagy proteins activates Ras/Raf/MEK/ERK signaling. In addition, the MEK inhibitor cobimetinib attenuated RosA's protective effect on endometrium by further activating CD8+ T cells on a CT-induced basis, while transmission electron microscopy, immunofluorescence, and western blots showed that cobimetinib blocked ERK signals activation and further induced phagocytosis on a CT-induced basis. These data indicated that RosA can activate the Ras/Raf/MEK/ERK signaling pathway to inhibit autophagy, and RosA could also regulate the activation of immune cells-CD8+T cells to protect the reproductive tract of CT-infected mice.


Subject(s)
Autophagy , CD8-Positive T-Lymphocytes , Chlamydia Infections , Chlamydia trachomatis , Cinnamates , Depsides , MAP Kinase Signaling System , Rosmarinic Acid , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Autophagy/drug effects , Female , Chlamydia Infections/immunology , Chlamydia Infections/drug therapy , Chlamydia trachomatis/drug effects , Chlamydia trachomatis/immunology , Mice , Depsides/pharmacology , MAP Kinase Signaling System/drug effects , Cinnamates/pharmacology , ras Proteins/metabolism , raf Kinases/metabolism , Disease Models, Animal , Mice, Inbred C57BL
7.
Respir Res ; 25(1): 210, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755610

ABSTRACT

BACKGROUND: Mitogen-activated protein kinase (MAPK)signaling-mediated smoking-associated pulmonary vascular remodeling (PVR) plays an important role in the pathogenesis of group 3 pulmonary hypertension (PH). And G protein pathway suppressor 2 (GPS2) could suppress G-protein signaling such as Ras and MAPK, but its role in cigarette smoking -induced PVR (CS-PVR) is unclear. METHODS: An in vivo model of smoke-exposed rats was constructed to assess the role of GPS2 in smoking-induced PH and PVR. In vitro, the effects of GPS2 overexpression and silencing on the function of human pulmonary arterial smooth cells (HPASMCs) and the underlying mechanisms were explored. RESULTS: GPS2 expression was downregulated in rat pulmonary arteries (PAs) and HPASMCs after CS exposure. More importantly, CS-exposed rats with GPS2 overexpression had lower right ventricular systolic pressure (RVSP), right ventricular hypertrophy index (RVHI), and wall thickness (WT%) than those without. And enhanced proliferation and migration of HPASMCs induced by cigarette smoking extract (CSE) can be evidently inhibited by overexpressed GPS2. Besides, GPS2siRNA significantly enhanced the proliferation, and migration of HPASMCs as well as activated Ras and Raf/ERK signaling, while these effects were inhibited by zoledronic acid (ZOL). In addition, GPS2 promoter methylation level in rat PAs and HPASMCs was increased after CS exposure, and 5-aza-2-deoxycytidine (5-aza) inhibited CSE-induced GPS2 hypermethylation and downregulation in vitro. CONCLUSIONS: GPS2 overexpression could improve the CS-PVR, suggesting that GPS2 might serve as a novel therapeutic target for PH-COPD in the future.


Subject(s)
Cigarette Smoking , MAP Kinase Signaling System , Rats, Sprague-Dawley , Vascular Remodeling , Animals , Vascular Remodeling/drug effects , Vascular Remodeling/physiology , Rats , Male , Humans , Cigarette Smoking/adverse effects , MAP Kinase Signaling System/physiology , MAP Kinase Signaling System/drug effects , Cells, Cultured , ras Proteins/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , raf Kinases/metabolism , raf Kinases/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/chemically induced , Extracellular Signal-Regulated MAP Kinases/metabolism
8.
Blood ; 144(2): 201-205, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38643494

ABSTRACT

ABSTRACT: Multiple myeloma is characterized by a huge heterogeneity at the molecular level. The RAS/RAF pathway is the most frequently mutated, in ∼50% of the patients. However, these mutations are frequently subclonal, suggesting a secondary event. Because these genes are part of our routine next-generation sequencing panel, we analyzed >10 000 patients with different plasma cell disorders to describe the RAS/RAF landscape. In this large cohort of patients, almost 61% of the patients presented a RAS/RAF mutation at diagnosis or relapse, but much lower frequencies occurred in presymptomatic cases. Of note, the mutations were different from that observed in solid tumors (higher proportions of Q61 mutations). In 29 patients with 2 different mutations, we were able to perform single-cell sequencing, showing that in most cases, mutations occurred in different subclones, suggesting an ongoing mutational process. These findings suggest that the RAS/RAF pathway is not an attractive target, both on therapeutic and residual disease assessment points of view.


Subject(s)
Multiple Myeloma , Mutation , Humans , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Plasma Cells/metabolism , Plasma Cells/pathology , ras Proteins/genetics , ras Proteins/metabolism , raf Kinases/genetics , raf Kinases/metabolism , High-Throughput Nucleotide Sequencing
9.
Cancer Discov ; 14(7): 1190-1205, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38588399

ABSTRACT

Alterations in the RAS-MAPK signaling cascade are common across multiple solid tumor types and are a driver for many cancers. NST-628 is a potent pan-RAF-MEK molecular glue that prevents the phosphorylation and activation of MEK by RAF, overcoming the limitations of traditional RAS-MAPK inhibitors and leading to deep durable inhibition of the pathway. Cellular, biochemical, and structural analyses of RAF-MEK complexes show that NST-628 engages all isoforms of RAF and prevents the formation of BRAF-CRAF heterodimers, a differentiated mechanism from all current RAF inhibitors. With a potent and durable inhibition of the RAF-MEK signaling complex as well as high intrinsic permeability into the brain, NST-628 demonstrates broad efficacy in cellular and patient-derived tumor models harboring diverse MAPK pathway alterations, including orthotopic intracranial models. Given its functional and pharmacokinetic mechanisms that are differentiated from previous therapies, NST-628 is positioned to make an impact clinically in areas of unmet patient need. Significance: This study introduces NST-628, a molecular glue having differentiated mechanism and drug-like properties. NST-628 treatment leads to broad efficacy with high tolerability and central nervous system activity across multiple RAS- and RAF-driven tumor models. NST-628 has the potential to provide transformative clinical benefits as both monotherapy and vertical combination anchor.


Subject(s)
MAP Kinase Signaling System , Neoplasms , Protein Kinase Inhibitors , Humans , Animals , Mice , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , MAP Kinase Signaling System/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , raf Kinases/metabolism , raf Kinases/antagonists & inhibitors , Cell Line, Tumor , ras Proteins/metabolism , Xenograft Model Antitumor Assays , Brain/metabolism , Brain/drug effects , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism
10.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38499327

ABSTRACT

Cellular responses leading to development, proliferation, and differentiation depend on RAF/MEK/ERK signaling, which integrates and amplifies signals from various stimuli for downstream cellular responses. C-RAF activation has been reported in many types of tumor cell proliferation and developmental disorders, necessitating the discovery of potential C-RAF protein regulators. Here, we identify a novel and specific protein interaction between C-RAF among the RAF kinase paralogs, and SIRT4 among the mitochondrial sirtuin family members SIRT3, SIRT4, and SIRT5. Structurally, C-RAF binds to SIRT4 through the N-terminal cysteine-rich domain, whereas SIRT4 predominantly requires the C-terminus for full interaction with C-RAF. Interestingly, SIRT4 specifically interacts with C-RAF in a pre-signaling inactive (serine 259-phosphorylated) state. Consistent with this finding, the expression of SIRT4 in HEK293 cells results in an up-regulation of pS259-C-RAF levels and a concomitant reduction in MAPK signaling as evidenced by strongly decreased phospho-ERK signals. Thus, we propose an additional extra-mitochondrial function of SIRT4 as a cytosolic tumor suppressor of C-RAF-MAPK signaling, besides its metabolic tumor suppressor role of glutamate dehydrogenase and glutamate levels in mitochondria.


Subject(s)
Sirtuins , Humans , HEK293 Cells , Sirtuins/genetics , Sirtuins/metabolism , Signal Transduction , Mitochondria/metabolism , raf Kinases/genetics , raf Kinases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
11.
Nat Struct Mol Biol ; 31(7): 1028-1038, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38388830

ABSTRACT

The RAS-MAPK pathway regulates cell proliferation, differentiation and survival, and its dysregulation is associated with cancer development. The pathway minimally comprises the small GTPase RAS and the kinases RAF, MEK and ERK. Activation of RAF by RAS is notoriously intricate and remains only partially understood. There are three RAF isoforms in mammals (ARAF, BRAF and CRAF) and two related pseudokinases (KSR1 and KSR2). RAS-mediated activation of RAF depends on an allosteric mechanism driven by the dimerization of its kinase domain. Recent work on human RAFs showed that MEK binding to KSR1 promotes KSR1-BRAF heterodimerization, which leads to the phosphorylation of free MEK molecules by BRAF. Similar findings were made with the single Drosophila RAF homolog. Here we show that the fly scaffold proteins CNK and HYP stabilize the KSR-MEK interaction, which in turn enhances RAF-KSR heterodimerization and RAF activation. The cryogenic electron microscopy structure of the minimal KSR-MEK-CNK-HYP complex reveals a ring-like arrangement of the CNK-HYP complex allowing CNK to simultaneously engage KSR and MEK, thus stabilizing the binary interaction. Together, these results illuminate how CNK contributes to RAF activation by stimulating the allosteric function of KSR and highlight the diversity of mechanisms impacting RAF dimerization as well as the regulatory potential of the KSR-MEK interaction.


Subject(s)
Drosophila Proteins , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Humans , Cryoelectron Microscopy , raf Kinases/metabolism , raf Kinases/chemistry , Protein Binding , Protein Multimerization , Models, Molecular , Drosophila melanogaster/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Protein Kinases , ras Proteins
12.
Mol Oncol ; 18(6): 1355-1377, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38362705

ABSTRACT

Mutations in the RAS-RAF-MEK-ERK pathway are frequent alterations in cancer and RASopathies, and while RAS oncogene activation alone affects 19% of all patients and accounts for approximately 3.4 million new cases every year, less frequent alterations in the cascade's downstream effectors are also involved in cancer etiology. RAS proteins initiate the signaling cascade by promoting the dimerization of RAF kinases, which can act as oncoproteins as well: BRAFV600E is the most common oncogenic driver, mutated in the 8% of all malignancies. Research in this field led to the development of drugs that target the BRAFV600-like mutations (Class I), which are now utilized in clinics, but cause paradoxical activation of the pathway and resistance development. Furthermore, they are ineffective against non-BRAFV600E malignancies that dimerize and could be either RTK/RAS independent or dependent (Class II and III, respectively), which are still lacking an effective treatment. This review discusses the recent advances in anti-RAF therapies, including paradox breakers, dimer-inhibitors, immunotherapies, and other novel approaches, critically evaluating their efficacy in overcoming the therapeutic limitations, and their putative role in blocking the RAS pathway.


Subject(s)
Neoplasms , raf Kinases , ras Proteins , Humans , ras Proteins/metabolism , ras Proteins/genetics , raf Kinases/metabolism , raf Kinases/antagonists & inhibitors , raf Kinases/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , Mutation , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Signal Transduction/drug effects , Molecular Targeted Therapy
13.
Angew Chem Int Ed Engl ; 63(13): e202316942, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38305637

ABSTRACT

Self-assemblies (i.e., nanoclusters) of the RAS GTPase on the membrane act as scaffolds that activate downstream RAF kinases and drive MAPK signaling for cell proliferation and tumorigenesis. However, the mechanistic details of nanoclustering remain largely unknown. Here, size-tunable nanodisc platforms and paramagnetic relaxation enhancement (PRE) analyses revealed the structural basis of the cooperative assembly processes of fully processed KRAS, mutated in a quarter of human cancers. The cooperativity is modulated by the mutation and nucleotide states of KRAS and the lipid composition of the membrane. Notably, the oncogenic mutants assemble in nonsequential pathways with two mutually cooperative 'α/α' and 'α/ß' interfaces, while α/α dimerization of wild-type KRAS promotes the secondary α/ß interaction sequentially. Mutation-based interface engineering was used to selectively trap the oligomeric intermediates of KRAS and probe their favorable interface interactions. Transiently exposed interfaces were available for the assembly. Real-time NMR demonstrated that higher-order oligomers retain higher numbers of active GTP-bound protomers in KRAS GTPase cycling. These data provide a deeper understanding of the nanocluster-enhanced signaling in response to the environment. Furthermore, our methodology is applicable to assemblies of many other membrane GTPases and lipid nanoparticle-based formulations of stable protein oligomers with enhanced cooperativity.


Subject(s)
Proto-Oncogene Proteins p21(ras) , Signal Transduction , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , ras Proteins/chemistry , raf Kinases/metabolism , Dimerization
14.
Signal Transduct Target Ther ; 8(1): 455, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38105263

ABSTRACT

Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.


Subject(s)
Lung Neoplasms , Melanoma , Humans , Mitogen-Activated Protein Kinase Kinases , Extracellular Signal-Regulated MAP Kinases/metabolism , raf Kinases/genetics , raf Kinases/metabolism
15.
Zhen Ci Yan Jiu ; 48(10): 977-985, 2023 Oct 25.
Article in English, Chinese | MEDLINE | ID: mdl-37879947

ABSTRACT

OBJECTIVES: To observe the effect of electroacupuncture (EA) on urodynamics and Raf/MEK/ERK signaling pathway in spine cord tissue of rats after suprasacral spinal cord injury (SSCI), so as to explore its possible mechanism in improving bladder function in rats with detrusor hyperreflexia after SSCI. METHODS: Female SD rats were randomly divided into blank, sham operation, model, EA and EA+PD98059 groups, with 12 rats in each group. Thorax (T) 10 spinal cord transection was performed by surgery. Rats in the EA group were given EA (10 Hz/50 Hz, 20 min) at "Ciliao" (BL32), "Zhongji" (CV3), "Sanyinjiao" (SP6) and "Dazhui" (GV14) once daily for 7 d. Rats of the EA+PD98059 group received intraperitoneal injection of PD98059 (5 mg/kg) 2 h before EA intervention. The urodyna-mics was used to measure the base pressure, leak point pressure, maximum pressure, maximum capacity and comp-liance of bladder, and the morphology of bladder detrusor tissue was observed with HE staining. The TUNEL staining was used to detect the cell apoptosis of the spinal cord tissue. The expression levels of exchange protein directly activated by cAMP 2 (Epac2), Rap, phosphorylated rapidly accelerated fibrosarcoma (p-Raf), phosphorylated mitogen-activated extracellular signal-regulated kinase (p-MEK), phosphorylated extracellular signal regulated kinase 1 and 2 (p-ERK1/2), B-cell lymphoma-2 (Bcl-2), and Bcl-2 associated X protein (Bax) were determined by Western blot. RESULTS: Compared with the sham operation group, the base pressure, leak point pressure and maximum pressure of bladder were significantly increased (P<0.01), the maximum bladder capacity and bladder compliance were decreased (P<0.01), the cell apoptosis rate of spinal cord tissue was increased (P<0.01), and the expression levels of Epac2, Rap, p-Raf, p-MEK, p-ERK1/2, and Bcl-2 protein in spinal cord tissue were decreased (P<0.01), while the expression level of Bax protein was increased (P<0.01) in the model group. After the treatment and compared with the model group, the base pressure, leak point pressure and maximum pressure of bladder, the cell apoptosis rate of spinal cord tissue, the expression level of Bax protein were decreased (P<0.05) in the EA group, while the maximum bladder capacity and bladder compliance, the expression levels of Epac2, Rap, p-Raf, p-MEK, p-ERK1/2, and Bcl-2 protein in spinal cord tissue were all increased (P<0.05, P<0.01). In comparison with the EA group, the base pressure, leak point pressure and maximum pressure of bladder, the cell apoptosis rate, the expression level of Bax protein were significantly increased (P<0.05), whereas the maximum bladder capacity, bladder compliance, and the expression levels of p-MEK, p-ERK1/2, and Bcl-2 protein were decreased (P<0.05) in the EA+PD98059 group. Results of HE staining showed disordered transitional epithelial cells and destroyed lamina propria in bladder detrusor tissue, with the infiltration of monocytes in the model group, which was obviously milder in both EA and EA+PD98059 groups, especially in the EA group. CONCLUSIONS: EA can improve the bladder function in detrusor hyperreflexia rats after SSCI, which may be related to its effect in up-regulating Epac2 and Rap, activating the Raf-MEK-ERK pathway, and reducing the cell apoptosis of spinal cord tissue.


Subject(s)
Electroacupuncture , Spinal Cord Injuries , Animals , Female , Rats , bcl-2-Associated X Protein/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/metabolism , Rats, Sprague-Dawley , Reflex, Abnormal , Signal Transduction , Spinal Cord , Spinal Cord Injuries/complications , Spinal Cord Injuries/genetics , Spinal Cord Injuries/therapy , Urodynamics , raf Kinases/metabolism
16.
Elife ; 122023 10 12.
Article in English | MEDLINE | ID: mdl-37823369

ABSTRACT

RAF kinase inhibitors can, under certain conditions, increase RAF kinase signaling. This process, which is commonly referred to as 'paradoxical activation' (PA), is incompletely understood. We use mathematical and computational modeling to investigate PA and derive rigorous analytical expressions that illuminate the underlying mechanism of this complex phenomenon. We find that conformational autoinhibition modulation by a RAF inhibitor could be sufficient to create PA. We find that experimental RAF inhibitor drug dose-response data that characterize PA across different types of RAF inhibitors are best explained by a model that includes RAF inhibitor modulation of three properties: conformational autoinhibition, dimer affinity, and drug binding within the dimer (i.e., negative cooperativity). Overall, this work establishes conformational autoinhibition as a robust mechanism for RAF inhibitor-driven PA based solely on equilibrium dynamics of canonical interactions that comprise RAF signaling and inhibition.


Subject(s)
Signal Transduction , raf Kinases , raf Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Molecular Conformation , Proto-Oncogene Proteins B-raf/metabolism
17.
Biochem Pharmacol ; 217: 115842, 2023 11.
Article in English | MEDLINE | ID: mdl-37802240

ABSTRACT

RAS/RAF/MEK/ERK signaling pathway is one of the most important pathways of Mitogen-activated protein kinases (MAPK), which widely participate in regulating cell proliferation, differentiation, apoptosis and signaling transduction. Autophagy is an essential mechanism that maintains cellular homeostasis by degrading aged and damaged organelles. Recently, some studies revealed RAS/RAF/MEK/ERK signaling pathway is closely related to autophagy regulation and has a dual effect in tumor cells. However, the specific mechanism by which RAS/RAF/MEK/ERK signaling pathway participates in autophagy regulation is not fully understood. This article provides a comprehensive review of the research progress with regard to the RAS/RAF/MEK/ERK signaling pathway and autophagy, as well as their interplay in cancer therapy. The impact of small molecule inhibitors that target the RAS/RAF/MEK/ERK signaling pathway on autophagy is discussed in this study. The advantages and limitations of the clinical combination of these small molecule inhibitors with autophagy inhibitors are also explored. The findings from this study may provide additional perspectives for future cancer treatment strategies.


Subject(s)
Extracellular Signal-Regulated MAP Kinases , Neoplasms , Aged , Humans , Autophagy , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/metabolism , Neoplasms/drug therapy , raf Kinases/metabolism , Signal Transduction , Proto-Oncogene Proteins p21(ras)/metabolism
18.
Protein Sci ; 32(10): e4767, 2023 10.
Article in English | MEDLINE | ID: mdl-37615343

ABSTRACT

RAS GTPases are proto-oncoproteins that regulate cell growth, proliferation, and differentiation in response to extracellular signals. The signaling functions of RAS, and other small GTPases, are dependent on their ability to cycle between GDP-bound and GTP-bound states. Structural analyses suggest that GTP hydrolysis catalyzed by HRAS can be regulated by an allosteric site located between helices 3, 4, and loop 7. Here we explore the relationship between intrinsic GTP hydrolysis on HRAS and the position of helix 3 and loop 7 through manipulation of the allosteric site, showing that the two sites are functionally connected. We generated several hydrophobic mutations in the allosteric site of HRAS to promote shifts in helix 3 relative to helix 4. By combining crystallography and enzymology to study these mutants, we show that closure of the allosteric site correlates with increased hydrolysis of GTP on HRAS in solution. Interestingly, binding to the RAS binding domain of RAF kinase (RAF-RBD) inhibits GTP hydrolysis in the mutants. This behavior may be representative of a cluster of mutations found in human tumors, which potentially cooperate with RAF complex formation to stabilize the GTP-bound state of RAS.


Subject(s)
raf Kinases , ras Proteins , Humans , Allosteric Site , Hydrolysis , raf Kinases/chemistry , raf Kinases/genetics , raf Kinases/metabolism , ras Proteins/genetics , ras Proteins/metabolism , Guanosine Triphosphate/metabolism
19.
J Chem Inf Model ; 63(8): 2483-2494, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37022803

ABSTRACT

The ERK pathway is one of the most important signaling cascades involved in tumorigenesis. So far, eight noncovalent inhibitors of RAF and MEK kinases in the ERK pathway have been approved by the FDA for the treatment of cancers; however, their efficacies are limited due to various resistance mechanisms. There is an urgent need to develop novel targeted covalent inhibitors. Here we report a systematic study of the covalent ligandabilities of the ERK pathway kinases (ARAF, BRAF, CRAF, KSR1, KSR2, MEK1, MEK2, ERK1, and ERK2) using constant pH molecular dynamics titration and pocket analysis. Our data revealed that the hinge GK (gate keeper)+3 cysteine in RAF family kinases (ARAF, BRAF, CRAF, KSR1, and KSR2) and the back loop cysteine in MEK1 and MEK2 are reactive and ligandable. Structure analysis suggests that the type II inhibitors belvarafenib and GW5074 may be used as scaffolds for designing pan-RAF or CRAF-selective covalent inhibitors directed at the GK+3 cysteine, while the type III inhibitor cobimetinib may be modified to label the back loop cysteine in MEK1/2. The reactivities and ligandabilities of the remote cysteine in MEK1/2 and the DFG-1 cysteine in MEK1/2 and ERK1/2 are also discussed. Our work provides a starting point for medicinal chemists to design novel covalent inhibitors of the ERK pathway kinases. The computational protocol is general and can be applied to the systematic evaluation of covalent ligandabilities of the human cysteinome.


Subject(s)
MAP Kinase Kinase Kinases , MAP Kinase Signaling System , Humans , MAP Kinase Signaling System/physiology , MAP Kinase Kinase Kinases/metabolism , Proto-Oncogene Proteins B-raf/chemistry , Proto-Oncogene Proteins B-raf/metabolism , Cysteine/metabolism , Signal Transduction , raf Kinases/metabolism
20.
Mol Cell ; 83(8): 1210-1215, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36990093

ABSTRACT

One of the open questions in RAS biology is the existence of RAS dimers and their role in RAF dimerization and activation. The idea of RAS dimers arose from the discovery that RAF kinases function as obligate dimers, which generated the hypothesis that RAF dimer formation might be nucleated by G-domain-mediated RAS dimerization. Here, we review the evidence for RAS dimerization and describe a recent discussion among RAS researchers that led to a consensus that the clustering of two or more RAS proteins is not due to the stable association of G-domains but, instead, is a consequence of RAS C-terminal membrane anchors and the membrane phospholipids with which they interact.


Subject(s)
raf Kinases , ras Proteins , Dimerization , Consensus , ras Proteins/genetics , ras Proteins/metabolism , raf Kinases/genetics , raf Kinases/metabolism , Lipids , Proto-Oncogene Proteins c-raf/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...