Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 12(1): 13218, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35918466

ABSTRACT

The present study aimed to remove crystal violet (CV), malachite green (MG), Cd(II), and Pb(II) from an aqueous solution using clinoptilolite zeolite (CZ) as an adsorbent. Response surface methodology (RSM) based on central composite design (CCD) was used to analyze and optimize the process parameters, such as pH, analyte concentration, adsorbent amount, and sonication time. Quadratic models with the coefficient of determination (R2) of 0.99 (p < 0.0001) were compared statistically. The results revealed that the selected models have good precision and a good agreement between the predicted and experimental data. The maximum removal of contaminants was achieved under optimum conditions of pH = 6, sonication time of 22 min, the adsorbent amount of 0.19 g, and analyte concentration of 10 mg L-1. The reusability test of the adsorbent showed that the CZ adsorbent could be used 5 times in water and wastewater treatment processes. According to the results of interference studies, the presence of different ions, even at high concentrations, does not interfere with the removal of contaminants. Applying the CZ adsorbent on environmental water samples revealed that CZ adsorbent could remove CV, MG, Cd(II), and Pb(II) in the range of 84.54% to 99.38% and contaminants present in industrial effluents. As a result, the optimized method in this study can be widely used with high efficiency for removing CV, MG, Cd(II), and Pb(II) from water and wastewater samples.


Subject(s)
Water Pollutants, Chemical , Zeolites , Adsorption , Cadmium , Coloring Agents , Gentian Violet , Hydrogen-Ion Concentration , Kinetics , Lead , Water , Water Pollutants, Chemical/analysis
3.
Sci Rep ; 12(1): 12806, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35896658

ABSTRACT

In this study, we investigated the process of preconcentrate and determine trace amounts of Auramine O (AO) and methylene blue (MB) dyes in environmental water samples. For this purpose, the ultrasound-assisted dispersive-magnetic nanocomposites-solid-phase microextraction (UA-DMNSPME) method was performed to extract AO and MB from aqueous samples by applying magnesium oxide nanoparticles (MgO-NPs). The proposed technique is low-cost, facile, fast, and compatible with many existing instrumental methods. Parameters affecting the extraction of AO and MB were optimized using response surface methodology (RSM). Short extraction time, low experimental tests, low consumption of organic solvent, low limits of detection (LOD), and high preconcentration factor (PF) was the advantages of method. The PF was 44.5, and LOD for AO and MB was 0.33 ng mL-1 and 1.66 ng mL-1, respectively. The linear range of this method for AO and MB were 1-1000 ng mL-1 and 5-2000 ng mL-1, respectively. In addition, the relative standard deviation (RSD; n = 5) of the mentioned analytes was between 2.9% and 3.1%. The adsorption-desorption studies showed that the efficiency of adsorbent extraction had not declined significantly up to 6 recycling runs, and the adsorbent could be used several times. The interference studies revealed that the presence of different ions did not interfere substantially with the extraction and determination of AO and MB. Therefore, UA-DMNSPME-UV/Vis method can be proposed as an efficient method for preconcentration and extraction of AO and MB from water and wastewater samples.


Subject(s)
Methylene Blue , Nanoparticles , Benzophenoneidum , Magnesium Oxide , Solid Phase Extraction/methods , Solid Phase Microextraction , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...