Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Life (Basel) ; 14(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39063653

ABSTRACT

To evaluate the phytochemical composition, antibacterial, and antioxidant activity of successive extracts of Centaurea calcitrapa L. (C. calcitrapa) aerial flowering parts, they were assessed in vitro. Using a spectrophotometer, the sample absorbance at 517 nm was used to quantify the scavenging activity. The negative control was DPPH. In the current study, the diffusion using agar wells technique was adapted to measure antimicrobial activity. Phytochemical analysis was performed using the recommended standard procedures. The methanol extract of C. calcitrapa exhibited high levels of total phenolic acids expressed as gallic acid (GA), measured as (97.25 ± 0.73 mg GAE/g) content compared to the chloroform, acetyl acetate, and aqueous extracts (27.42 ± 0.29, 64.25 ± 0.96, and 17.25 ± 0.73 mg GAE/g), respectively. Additionally, the methanol extract had a higher total tannin (27.52 ± 0.53 mg TAE/g) content compared to the chloroform, ethyl acetate, and aqueous extracts (12.02 ± 0.55, 26.01 ± 0.81, and 7.35 ± 0.56 mg TAE/g), respectively, while the aqueous extract contains a lower percentage of flavonoids (141.10 ± 1.31 mg RTE/g) compared to the higher content achieved by the methanol extract (425.93 ± 1.27 mg RTE/g). The hydroxyl groups of the flavonoid and the phenolic compounds found in C. calcitrapa are essentially scavenging free radicals. Radical scavenging activity was highest in the methanol extract (IC50 = 2.82 µg/mL), aqueous extract (IC50 = 8.03 µg/mL), ethyl acetate extract (IC50 = 4.79 µg/mL), and chloroform extract (IC50 = 6.33 µg/mL), as compared to the standard scavenging activity (IC50 = 2.52 µg/mL). The antibacterial properties of C. calcitrapa against Gram-negative bacterial strains Klebsiella pneumoniae, Escherichia coli, Enterobacter aerogenes, and Acinetobacter baumanii, in addition to Gram-positive strains Staphylococcus haemolyticus, Enterococcus faecalis, and Staphylococcus aureus, revealed inhibition zone diameter. The findings of this investigation establish that the aerial flowering parts of C. calcitrapa have substantial antibacterial action against human infections, and the plant can serve as a significant antioxidant that can be employed to prevent and treat severe degenerative diseases brought on by oxidative stress. qPCR showed that C. calcitrapa extracts elevate both SOD1 and SOD2 (cellular oxidation markers) with remarkable folds (1.8-fold for SOD1 and SOD2) with ethyl acetate plant extract against ascorbic acid as a control. This result reflects that C. calcitrapa extracts have remarkable antioxidant activity.

2.
Plants (Basel) ; 10(2)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670511

ABSTRACT

In this study, the anti-stress capabilities of the foliar application of chitosan, dissolved in four different organic acids (acetic acid, ascorbic acid, citric acid and malic acid) have been investigated on tomato (Solanum lycopersicum L.) plants under salinity stress (100 mM NaCl). Morphological traits, photosynthetic pigments, osmolytes, secondary metabolites, oxidative stress, minerals, antioxidant enzymes activity, isozymes and protein patterns were tested for potential tolerance of tomato plants growing under salinity stress. Salinity stress was caused a reduction in growth parameters, photosynthetic pigments, soluble sugars, soluble proteins and potassium (K+) content. However, the contents of proline, ascorbic acid, total phenol, malondialdehyde (MDA), hydrogen peroxide (H2O2), sodium (Na+) and antioxidant enzyme activity were increased in tomato plants grown under saline conditions. Chitosan treatments in any of the non-stressed plants showed improvements in morphological traits, photosynthetic pigments, osmolytes, total phenol and antioxidant enzymes activity. Besides, the harmful impacts of salinity on tomato plants have also been reduced by lowering MDA, H2O2 and Na+ levels. Chitosan treatments in either non-stressed or stressed plants showed different responses in number and density of peroxidase (POD), polyphenol oxidase (PPO) and superoxide dismutase (SOD) isozymes. NaCl stress led to the diminishing of protein bands with different molecular weights, while they were produced again in response to chitosan foliar application. These responses were varied according to the type of solvent acid. It could be suggested that foliar application of chitosan, especially that dissolved in ascorbic or citric acid, could be commercially used for the stimulation of tomato plants grown under salinity stress.

SELECTION OF CITATIONS
SEARCH DETAIL