Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Pollut ; 359: 124595, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39053804

ABSTRACT

Ultrafine particles (UFPs; PM0.1) possess intensified health risk due to their smaller size and unique spatial variability. One of major emission sources for UFPs is vehicle exhaust, which varies based on the traffic composition in each type of roadside sector. The current challenge of epidemiological UFPs study is limited characterization ability due to expensive instruments. This study assessed the UFPs particle number concentrations (UFPs PNC) exposure dose for typical healthy adults and children at three different roadside sectors, including industrial roadside (IN), residential roadside (RS), and urban background (UB). Furthermore, this study also developed and utilized machine learning (ML) algorithms that could accurately characterize the UFPs exposure dose and explain the covariates effects on the model outputs, representing the intra-urban variability of UFPs between sectors. It was found that the average inhaled UFPs dose for healthy adults and children during off-peak season (warm period) were 1.71 ± 0.19 × 1010; 1.28 ± 0.22 × 1010; 1.09 ± 0.18 × 1010 #/hour and 1.33 ± 0.15 × 1010; 0.99 ± 0.17 × 1010; 0.86 ± 0.14 × 1010 #/hour at IN, RS, UB. Inhaled UFPs were mainly deposited in tracheobronchial (TB) respiratory fraction for adults (67.7%) and in alveoli (ALV) fraction for children (67.5%). Among three ML algorithms implemented in this study, XGBoost possessed the highest UFPs PNC exposure dose estimation performances with R2 = 0.965; 0.959; 0.929 & RMSE = 0.79 × 108; 0.54 × 108; 0.15 × 105 #/hour at IN, RS, and UB which then followed by multiple linear regression (MLR), and random forest (RF). Furthermore, SHAP analysis from the XGBoost model has successfully pointed out the spatial variability of each roadside sector by quantifying the approximated contributions of covariates to the model's output. Findings in this study highlighted the potential use of ML models as an alternative for preliminary particle exposure source apportionment.


Subject(s)
Air Pollutants , Environmental Monitoring , Machine Learning , Particle Size , Particulate Matter , Vehicle Emissions , Particulate Matter/analysis , Humans , Air Pollutants/analysis , Vehicle Emissions/analysis , Environmental Monitoring/methods , Child , Adult , Environmental Exposure/statistics & numerical data , Inhalation Exposure/statistics & numerical data , Air Pollution/statistics & numerical data
2.
Environ Res ; 218: 115061, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36525995

ABSTRACT

The problem of ultrafine particles (UFPs; PM0.1) has been prevalent since the past decades. In addition to become easily inhaled by human respiratory system due to their ultrafine diameter (<100 nm), ambient UFPs possess various physicochemical properties which make it more toxic. These properties vary based on the emission source profile. The current development of UFPs studies is hindered by the problem of expensive instruments and the inexistence of standardized measurement method. This review provides detailed insights on ambient UFPs sources, physicochemical properties, measurements, and estimation models development. Implications on health impacts due to short-term and long-term exposure of ambient UFPs are also presented alongside the development progress of potentially low-cost UFPs sensors which can be used for future UFPs studies references. Current challenge and future outlook of ambient UFPs research are also discussed in this review. Based on the review results, ambient UFPs may originate from primary and secondary sources which include anthropogenic and natural activities. In addition to that, it is confirmed from various chemical content analysis that UFPs carry heavy metals, PAHs, BCs which are toxic in its nature. Measurement of ambient UFPs may be performed through stationary and mobile methods for environmental profiling and exposure assessment purposes. UFPs PNC estimation model (LUR) developed from measurement data could be deployed to support future epidemiological study of ambient UFPs. Low-cost sensors such as bipolar ion and ionization sensor from common smoke detector device may be further developed as affordable instrument to monitor ambient UFPs. Recent studies indicate that short-term exposure of UFPs can be associated with HRV change and increased cardiopulmonary effects. On the other hand, long-term UFPs exposure have positive association with COPD, CVD, CHF, pre-term birth, asthma, and also acute myocardial infarction cases.


Subject(s)
Air Pollutants , Asthma , Humans , Particulate Matter/toxicity , Particulate Matter/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Smoke/analysis , Epidemiologic Studies , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL