Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 6(12): 6510-6527, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33320631

ABSTRACT

Reactive oxygen species (ROS)-responsive nanomedicine has been extensively developed to improve the therapeutic effects while reducing the systemic toxicity. ROS, as important biological metabolites and signaling molecules, are known to overexpress in most of tumors and inflammations. Among various ROS-sensitive moieties, phenylborate ester (PBAE) with easy modifiable structure and excellent biocompatibility, represents one of the most ROS-sensitive structures. To harness it as a switch, the past several years had witnessed a booming of ROS-sensitive PBAE-based nanomedicine for various medical purposes. Much of the efforts were devoted to exploiting the potential in the management of antitumor and anti-inflammation. This review first summarizes the design strategies of PBAE in the construction of nanomedicine, with PBAE acting as not only the ROS-responsive unit, but also the roles of hydrophobic backbone or bridging segment in the macromolecular structures. The ROS-responsive mechanisms are then briefly discussed. Afterward, we focus on the introduction of the state-of-the-art research on ROS-responsive PBAE-based nanomedicine for antitumor and anti-inflammation applications. The conclusion and future perspectives of ROS-responsive nanomedicine are also provided.


Subject(s)
Nanomedicine , Neoplasms , Esters , Humans , Neoplasms/drug therapy , Reactive Oxygen Species
2.
PLoS One ; 14(5): e0216201, 2019.
Article in English | MEDLINE | ID: mdl-31048867

ABSTRACT

The behavior of solar cells and modules under various operational conditions can be determined effectively when their intrinsic parameters are accurately estimated and used to simulate the current-voltage (I-V) characteristics. This work proposed a new computational approach based on approximation and correction technique (ACT) for simple and efficient extraction of solar cells and modules parameters from the single-diode model. In this technique, an approximated value of series resistance (Rs) was first derived and used to determine the initial value of parallel resistance (Rp). Later, the final corrected values of Rs and Rp were obtained by resubstituting their approximated values in a five-loop iteration using the manipulated equations. For rapid evaluation and validation of the proposed technique, a software application was also created using MATLAB program. The correctness and robustness of the proposed technique was validated on five types of solar cells and modules operated at varied temperatures and irradiances. The lowest RMSE value was achieved for RTC France (7.78937E-4) and PVM 752 GaAs (2.10497E-4) solar cell. The legitimacy of ACT extracted parameters was established using a simple yet competitive implementation approach wherein the performance of the developed technique was compared with several state-of-the-art methods recently reported in the literature.


Subject(s)
Solar Energy/statistics & numerical data , Algorithms , Electric Impedance/classification , Software , Sunlight , Temperature
3.
ACS Appl Mater Interfaces ; 8(38): 25631-6, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27581104

ABSTRACT

The channel width-to-length ratio is an important transistor parameter for integrated circuit design. Contact diffusion into the channel during fabrication or operation alters the channel width and this important parameter. A novel methodology combining atomic force microscopy and scanning Kelvin probe microscopy (SKPM) with self-consistent modeling is developed for the nondestructive detection of contact diffusion on active devices. Scans of the surface potential are modeled using physically based Technology Computer Aided Design (TCAD) simulations when the transistor terminals are grounded and under biased conditions. The simulations also incorporate the tip geometry to investigate its effect on the measurements due to electrostatic tip-sample interactions. The method is particularly useful for semiconductor- and metal-semiconductor interfaces where the potential contrast resulting from dopant diffusion is below that usually detectable with scanning probe microscopy.

SELECTION OF CITATIONS
SEARCH DETAIL