Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 976: 176691, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38821166

ABSTRACT

(233/250) Retinal vein occlusion (RVO) causes macular edema and retinal ischemia resulting in visual field and vision loss. A bispecific antibody that blocks VEGF-A and angiopoietin-2 (Ang-2) has been recently launched and applied clinically to treat macular edema, but the role of Ang-2 in the pathogenesis of RVO is still unclear. In this study, we investigated the effects of the anti-VEGF-A/anti-Ang-2 bispecific antibody (BsAb) in a murine RVO model. By using RVO model mice, the expression of Ang-2 gene and protein was examined in the retina through real-time qPCR and Western blotting, respectively. A significant increase in Ang-2 was detected 1 day after occlusion. Immediately after occlusion, control IgG 400 µg/mL, anti-VEGF-A antibody 200 µg/mL, anti-Ang-2 antibody 200 µg/mL, and BsAb 400 µg/mL were intravitreally administered at 2 µL. Visual function was examined using electroretinograms, and apoptosis was examined using TUNEL staining. Interestingly, BsAb partially suppressed the decrease in amplitude of a and b waves compared to control IgG. Anti-Ang-2 antibody and BsAb reduced apoptosis-positive cells 1 day after occlusion. Comprehensive gene expression profiles were also examined using RNA sequencing analysis. RNA sequencing analysis of the retinal tissues showed that BsAb suppressed expression of gene groups associated with inflammatory response and vascular development compared to anti-VEGF-A antibody. Taken together, higher expression of Ang-2 contributes to the pathophysiology of RVO, providing a possible mechanism for the efficacy of BsAb in suppressing retinal dysfunction in RVO.


Subject(s)
Angiopoietin-2 , Antibodies, Bispecific , Disease Models, Animal , Retina , Retinal Vein Occlusion , Vascular Endothelial Growth Factor A , Animals , Retinal Vein Occlusion/drug therapy , Angiopoietin-2/antagonists & inhibitors , Angiopoietin-2/metabolism , Angiopoietin-2/immunology , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Mice , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Retina/drug effects , Retina/metabolism , Retina/pathology , Apoptosis/drug effects , Male , Mice, Inbred C57BL , Intravitreal Injections , Electroretinography
2.
Environ Res ; 244: 115691, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37211177

ABSTRACT

Environmental changes such as seasonality, decadal oscillation, and anthropogenic forcing may shape the dynamics of lower trophic-level organisms. In this study, 9-years (2010-2018) of monitoring data on microscopic protists such as diatoms and dinoflagellates, and environmental variables were analyzed to clarify the relationships between plankton and local/synoptic environmental changes. We found that time-series temperature increased in May, whereas it decreased in August and November. Nutrients (e.g., phosphate) decreased in May, remained unchanged in August, and increased in November from 2010 to 2018. The partial pressure of CO2 increased in May, August, and November over time. It is notable that the change in seawater temperature (-0.54 to 0.32 °C per year) and CO2 levels (3.6-5.7 µatm CO2 per year) in the latest decade in the eastern Tsugaru Strait were highly dynamic than the projected anthropogenic climate change. Protist abundance generally increased or stayed unchanged during the examined period. In August and November, when cooling and decreases in pH occurred, diatoms such as Chaetoceros subgenus Hyalochaete spp. and Rhizosoleniaceae temporally increased from 2010 to 2018. During the study period, we found that locally aquacultured scallops elevated soft tissue mass relative to the total weight as diatom abundance increased, and the relative scallop soft tissue mass was positively related to the Pacific Decadal Oscillation index. These results indicate that decadal climatic forcing in the ocean modifies the local physical and chemical environment, which strongly affects phytoplankton dynamics rather than the effect of anthropogenic climate change in the eastern Tsugaru Strait.


Subject(s)
Carbon Dioxide , Diatoms , Japan , Meteorology , Seawater/chemistry , Aquaculture
4.
Pediatr Blood Cancer ; 70(10): e30590, 2023 10.
Article in English | MEDLINE | ID: mdl-37467119

ABSTRACT

BACKGROUND: Emicizumab significantly reduces bleedings in patients with hemophilia A (PwHA). A clinical study (HAVEN 7; NCT04431726) for PwHA aged less than or equal to 12 months is ongoing, but emicizumab-driven coagulation potential in PwHA in early childhood remains to be clarified. AIM: To investigate the in vitro or in vivo coagulation potential of emicizumab in plasmas obtained from infant and toddler PwHA. METHODS: Twenty-seven plasma samples from 14 infant/toddler PwHA (aged 0-42 months, median 19 months) who received emicizumab (n = 9), factor (F)VIII products (n = 8), or no treatment (n = 10) were obtained. FVIII activity in FVIII-treated plasmas was cancelled by the addition of anti-FVIII monoclonal antibody (mAb). Emicizumab-treated plasmas (in vivo) and emicizumab-spiked plasmas (in vitro) were analyzed. Emicizumab-untreated plasma or emicizumab-treated plasma supplemented with two anti-emicizumab mAbs were used as references. Adjusted maximum coagulation velocity (Ad|min1|) by clot waveform analysis and peak thrombin (Peak-Th) by thrombin generation assay was assessed. RESULTS: Ad|min1| values in 24 samples were improved by the presence of emicizumab. Values did not improve in the three remaining samples (aged 1, 23, and 31 months). Although the presence of emicizumab showed an age-dependent increase in Peak-Th in 20 samples, this increase was not observed in seven samples (aged 0, 1, 1, 2, 8, 19, and 36 months). Emicizumab-dependent increases in both Ad|min1| and Peak-Th were shown in 18 samples, and increases in either parameter were shown in eight samples. One sample (from patient aged 1 month) showed no increase in both, however. CONCLUSION: Emicizumab could improve coagulant potential in plasmas from infant/toddler patients with hemophilia A.


Subject(s)
Antibodies, Bispecific , Hemophilia A , Child, Preschool , Humans , Infant , Hemophilia A/drug therapy , Thrombin , Blood Coagulation , Hemorrhage/drug therapy , Plasma , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Factor VIII
5.
Sci Rep ; 12(1): 3967, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273248

ABSTRACT

The human DEAD-box protein 3 (DDX3) has been reported as a positive regulator and functions in the induction of type I interferon signaling. We elucidated the function of DDX3 in the positive regulation of IFNB production in non-pDC cells. We found that DDX3 regulates virus-induced activation of IFNB at the level of IRF-3. However, it does not affect conventional innate signaling, including IRF-3 phosphorylation, dimerization, or nuclear translocation of IRF-3, but has some downstream events after IRF-3 phosphorylation. Co-immunoprecipitation analyses revealed that DDX3 interacts with IRF-3 through its DNA-binding domain and promotes IRF-3-mediated IFNB promoter activation. DDX3 does not affect the formation of the IRF-3/p300/CBP complex. Instead, ChIP and EMSA assay revealed that DDX3 promotes the recruitment of IRF-3 and transcriptional co-activator p300/CBP to the IFNB promoter. The ATP binding pocket of DDX3 is involved in this association and is essential for the transcriptional activation. Taken together, our study demonstrates that DDX3 plays an important role in guiding a transcription factor complex formed by antiviral signaling to the target gene promoter.


Subject(s)
DEAD-box RNA Helicases , Interferon Regulatory Factor-3 , Cell Nucleus/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Humans , Immunoprecipitation , Interferon Regulatory Factor-3/metabolism , Promoter Regions, Genetic , Transcriptional Activation
6.
J Autoimmun ; 127: 102794, 2022 02.
Article in English | MEDLINE | ID: mdl-35168003

ABSTRACT

Mutations in IFIH1 gene encoding viral RNA sensor MDA5 have been reported responsible for many interferonopathies, including Aicardi-Goutières syndrome (AGS) and monogenic lupus, however, the pathological link between IFIH1 mutations and various autoimmune symptoms remains unclear. Here, we generated transgenic mice expressing human MDA5 R779H mutant (R779H Tg), reported in AGS and monogenic lupus patient. Mice spontaneously developed myocarditis and nephritis with upregulation of type I IFNs in the major organs. R779H Tg Mavs-/- and R779H Tg Ifnar-/- showed no phenotypes, indicating direct MDA5-signaling pathway involvement. Rag-2 deficiency and bone marrow cells transfer from wild type to adult mice did not prevent myocarditis development, while mice with cardiomyocyte-specific expression of hMDA5 R779H showed cardiomegaly and high expression of inflammatory cytokines. Taken together, our study clarifies that type I IFNs production and chemokines from cardiomyocytes starts in neonatal period and is critical for the development of myocarditis. Activated lymphocytes and auto-antibodies exacerbate the pathogenesis but are dispensable for the onset.


Subject(s)
Interferon-Induced Helicase, IFIH1/genetics , Myocarditis , Nephritis , Animals , Autoimmune Diseases of the Nervous System/genetics , Humans , Interferon-Induced Helicase, IFIH1/metabolism , Mice , Mice, Transgenic , Mutation , Myocarditis/genetics , Nephritis/genetics
7.
J Thromb Haemost ; 19(12): 2938-2946, 2021 12.
Article in English | MEDLINE | ID: mdl-34418287

ABSTRACT

BACKGROUND: Emicizumab is a humanized bispecific monoclonal antibody that bridges activated factor IX (FIXa) and factor X (FX) to mimic the function of factor VIII (FVIII). It suppresses the bleeding tendency in hemophilia A patients with or without FVIII inhibitors. A case of an adult FVIII inhibitor-positive hemophilia A patient in whom treatment with emicizumab was discontinued owing to the repeated bleeding events and prolonged activated partial thromboplastin time. OBJECTIVE: To analyze the mechanisms of decreased efficacy of emicizumab. METHODS: Residual plasma samples were used to measure the following: emicizumab concentration in plasma, measured by enzyme-linked immunosorbent assay; titer of anti-drug antibody (ADA) against emicizumab, measured by electrochemiluminescence; and neutralizing activity against emicizumab, measured by Bethesda method modified by using emicizumab-spiked FVIII-deficient plasma. RESULTS: At week 31, emicizumab concentration was 15.0 µg/ml, and ADAs were measured as positive. Emicizumab concentration continued to decrease until emicizumab discontinuation point at week 49, and after week 50, emicizumab concentrations were below the limitation of quantification. The ADA titer increased transiently from week 31, even past the emicizumab discontinuation point at week 49. The ADA titer then gradually decreased until the last sampling point at week 93. Neutralizing activity against emicizumab was detected after emicizumab discontinuation. Epitope analysis showed that the ADAs recognize the anti-FIXa and anti-FX Fab arms of emicizumab, but not the Fc region. CONCLUSION: The appearance of ADAs with emicizumab-neutralizing activity and potential to accelerate emicizumab clearance decreased the efficacy of emicizumab.


Subject(s)
Antibodies, Anti-Idiotypic/blood , Antibodies, Bispecific , Antibodies, Monoclonal, Humanized , Hemophilia A , Adult , Antibodies, Bispecific/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Factor VIII , Hemophilia A/diagnosis , Hemophilia A/drug therapy , Humans
8.
Mol Cell Biol ; 41(3): e0054220, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33288641

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) is an emerging highly pathogenic phlebovirus. The syndrome is characterized by the substantial production of inflammatory cytokines and chemokines, described as a cytokine storm, which correlates with multiorgan failure and high mortality. SFSTV nonstructural (NSs) protein was suggested to mediate the pathogenesis by inhibiting antiviral interferon signaling in the host. However, whether SFTSV NSs protein mediates the induction of a fatal cytokine storm remains unaddressed. We demonstrated that SFTSV NSs promotes the hyperinduction of cytokine/chemokine genes in vitro, reminiscent of a cytokine storm. Using gene deletion and pharmacological intervention, we found that the induced cytokine storm is driven by the transcription factor NF-κB. Our investigation revealed that TANK-binding kinase 1 (TBK1) suppresses NF-κB signaling and cytokine/chemokine induction in a kinase activity-dependent manner and that NSs sequesters TBK1 to prevent it from suppressing NF-κB, thereby promoting the activation of NF-κB and its target cytokine/chemokine genes. Of note, NF-κB inhibition suppressed the induction of proinflammatory cytokines in SFTSV-infected type I interferon (IFN-I) receptor 1-deficient (Ifnar1-/-) mice. These findings establish the essential role of NSs in SFTS pathogenesis and suggest NF-κB as a possible therapeutic target.

9.
Mol Cell Biol ; 40(5)2020 02 12.
Article in English | MEDLINE | ID: mdl-31818880

ABSTRACT

TRIF is an essential adaptor for Toll-like receptor 3/4 (TLR3/4) signaling to activate transcription factor interferon regulatory factor 3 (IRF-3). We examined the molecular mechanism of TLR3 signaling and found that TLR3 stimulation by double-stranded RNA (dsRNA) induces phosphorylation of TRIF at Ser210 and is required for IRF-3 recruitment. TANK-binding kinase 1 (TBK1) is known to be responsible for IRF-3 phosphorylation and activation. We found that TBK1 is also responsible for phosphorylation of Ser210 in TRIF. Unexpectedly, we discovered that IκB kinase ß (IKKß) plays an essential role in TLR3/4 signaling using a pharmacological inhibitor and gene deletion. Of note, IKKß is essential in TLR3/4 but not in retinoic acid-inducible gene I (RIG-I) signaling. Mechanistically, IKKß transiently associates with and induces the phosphorylation of TBK1 upon TLR3 stimulation. These results suggest a phosphorylation cascade of IKKß and TBK1, where priming phosphorylation of TBK1 by IKKß is required to surpass the threshold to induce signaling, thereby activating IRF-3.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , I-kappa B Kinase/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/metabolism , Adaptor Proteins, Vesicular Transport/genetics , HEK293 Cells , Humans , I-kappa B Kinase/genetics , Interferon Regulatory Factor-3/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Serine/metabolism , Toll-Like Receptor 3/genetics , Toll-Like Receptor 4/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...