Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 501
Filter
1.
Jpn J Radiol ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096483

ABSTRACT

PURPOSE: The diagnostic performance of large language artificial intelligence (AI) models when utilizing radiological images has yet to be investigated. We employed Claude 3 Opus (released on March 4, 2024) and Claude 3.5 Sonnet (released on June 21, 2024) to investigate their diagnostic performances in response to the Radiology's Diagnosis Please quiz questions. MATERIALS AND METHODS: In this study, the AI models were tasked with listing the primary diagnosis and two differential diagnoses for 322 quiz questions from Radiology's "Diagnosis Please" cases, which included cases 1 to 322, published from 1998 to 2023. The analyses were performed under the following conditions: (1) Condition 1: submitter-provided clinical history (text) alone. (2) Condition 2: submitter-provided clinical history and imaging findings (text). (3) Condition 3: clinical history (text) and key images (PNG file). We applied McNemar's test to evaluate differences in the correct response rates for the overall accuracy under Conditions 1, 2, and 3 for each model and between the models. RESULTS: The correct diagnosis rates were 58/322 (18.0%) and 69/322 (21.4%), 201/322 (62.4%) and 209/322 (64.9%), and 80/322 (24.8%) and 97/322 (30.1%) for Conditions 1, 2, and 3 for Claude 3 Opus and Claude 3.5 Sonnet, respectively. The models provided the correct answer as a differential diagnosis in up to 26/322 (8.1%) for Opus and 23/322 (7.1%) for Sonnet. Statistically significant differences were observed in the correct response rates among all combinations of Conditions 1, 2, and 3 for each model (p < 0.01). Claude 3.5 Sonnet outperformed in all conditions, but a statistically significant difference was observed only in the comparison for Condition 3 (30.1% vs. 24.8%, p = 0.028). CONCLUSION: Two AI models demonstrated a significantly improved diagnostic performance when inputting both key images and clinical history. The models' ability to identify important differential diagnoses under these conditions was also confirmed.

2.
Neuroradiology ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995393

ABSTRACT

PURPOSE: This study aimed to investigate the efficacy of fine-tuned large language models (LLM) in classifying brain MRI reports into pretreatment, posttreatment, and nontumor cases. METHODS: This retrospective study included 759, 284, and 164 brain MRI reports for training, validation, and test dataset. Radiologists stratified the reports into three groups: nontumor (group 1), posttreatment tumor (group 2), and pretreatment tumor (group 3) cases. A pretrained Bidirectional Encoder Representations from Transformers Japanese model was fine-tuned using the training dataset and evaluated on the validation dataset. The model which demonstrated the highest accuracy on the validation dataset was selected as the final model. Two additional radiologists were involved in classifying reports in the test datasets for the three groups. The model's performance on test dataset was compared to that of two radiologists. RESULTS: The fine-tuned LLM attained an overall accuracy of 0.970 (95% CI: 0.930-0.990). The model's sensitivity for group 1/2/3 was 1.000/0.864/0.978. The model's specificity for group1/2/3 was 0.991/0.993/0.958. No statistically significant differences were found in terms of accuracy, sensitivity, and specificity between the LLM and human readers (p ≥ 0.371). The LLM completed the classification task approximately 20-26-fold faster than the radiologists. The area under the receiver operating characteristic curve for discriminating groups 2 and 3 from group 1 was 0.994 (95% CI: 0.982-1.000) and for discriminating group 3 from groups 1 and 2 was 0.992 (95% CI: 0.982-1.000). CONCLUSION: Fine-tuned LLM demonstrated a comparable performance with radiologists in classifying brain MRI reports, while requiring substantially less time.

3.
Article in English | MEDLINE | ID: mdl-39003437

ABSTRACT

PURPOSE: Many large radiographic datasets of lung nodules are available, but the small and hard-to-detect nodules are rarely validated by computed tomography. Such difficult nodules are crucial for training nodule detection methods. This lack of difficult nodules for training can be addressed by artificial nodule synthesis algorithms, which can create artificially embedded nodules. This study aimed to develop and evaluate a novel cost function for training networks to detect such lesions. Embedding artificial lesions in healthy medical images is effective when positive cases are insufficient for network training. Although this approach provides both positive (lesion-embedded) images and the corresponding negative (lesion-free) images, no known methods effectively use these pairs for training. This paper presents a novel cost function for segmentation-based detection networks when positive-negative pairs are available. METHODS: Based on the classic U-Net, new terms were added to the original Dice loss for reducing false positives and the contrastive learning of diseased regions in the image pairs. The experimental network was trained and evaluated, respectively, on 131,072 fully synthesized pairs of images simulating lung cancer and real chest X-ray images from the Japanese Society of Radiological Technology dataset. RESULTS: The proposed method outperformed RetinaNet and a single-shot multibox detector. The sensitivities were 0.688 and 0.507 when the number of false positives per image was 0.2, respectively, with and without fine-tuning under the leave-one-case-out setting. CONCLUSION: To our knowledge, this is the first study in which a method for detecting pulmonary nodules in chest X-ray images was evaluated on a real clinical dataset after being trained on fully synthesized images. The synthesized dataset is available at https://zenodo.org/records/10648433 .

4.
Cureus ; 16(6): e62997, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39050295

ABSTRACT

Peliosis hepatis (PH) is a rare benign vascular condition characterized by sinusoidal dilatation and the presence of blood-filled spaces within the liver. PH is often clinically asymptomatic and is discovered incidentally. It presents a clinical challenge as its imaging findings frequently mimic other pathologies, including primary or secondary malignancies and abscesses. In this article, we present a case of a 73-year-old woman with a history of recurrent tongue cancer treated by surgery and chemoradiotherapy, and concurrent multiple myeloma, in whom PH was incidentally discovered. Based on computed tomography, magnetic resonance imaging, and 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) imaging findings prior to biopsy, PH was diagnosed, and pathologically confirmed. Follow-up computed tomography five months after the discontinuation of raloxifene hydrochloride, a selective estrogen receptor modulator and a suspected drug causing PH, the regression of PH lesions was observed.

5.
Jpn J Radiol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954192

ABSTRACT

PURPOSE: Large language models (LLMs) are rapidly advancing and demonstrating high performance in understanding textual information, suggesting potential applications in interpreting patient histories and documented imaging findings. As LLMs continue to improve, their diagnostic abilities are expected to be enhanced further. However, there is a lack of comprehensive comparisons between LLMs from different manufacturers. In this study, we aimed to test the diagnostic performance of the three latest major LLMs (GPT-4o, Claude 3 Opus, and Gemini 1.5 Pro) using Radiology Diagnosis Please Cases, a monthly diagnostic quiz series for radiology experts. MATERIALS AND METHODS: Clinical history and imaging findings, provided textually by the case submitters, were extracted from 324 quiz questions originating from Radiology Diagnosis Please cases published between 1998 and 2023. The top three differential diagnoses were generated by GPT-4o, Claude 3 Opus, and Gemini 1.5 Pro, using their respective application programming interfaces. A comparative analysis of diagnostic performance among these three LLMs was conducted using Cochrane's Q and post hoc McNemar's tests. RESULTS: The respective diagnostic accuracies of GPT-4o, Claude 3 Opus, and Gemini 1.5 Pro for primary diagnosis were 41.0%, 54.0%, and 33.9%, which further improved to 49.4%, 62.0%, and 41.0%, when considering the accuracy of any of the top three differential diagnoses. Significant differences in the diagnostic performance were observed among all pairs of models. CONCLUSION: Claude 3 Opus outperformed GPT-4o and Gemini 1.5 Pro in solving radiology quiz cases. These models appear capable of assisting radiologists when supplied with accurate evaluations and worded descriptions of imaging findings.

6.
J Imaging Inform Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955964

ABSTRACT

This study aimed to investigate the performance of a fine-tuned large language model (LLM) in extracting patients on pretreatment for lung cancer from picture archiving and communication systems (PACS) and comparing it with that of radiologists. Patients whose radiological reports contained the term lung cancer (3111 for training, 124 for validation, and 288 for test) were included in this retrospective study. Based on clinical indication and diagnosis sections of the radiological report (used as input data), they were classified into four groups (used as reference data): group 0 (no lung cancer), group 1 (pretreatment lung cancer present), group 2 (after treatment for lung cancer), and group 3 (planning radiation therapy). Using the training and validation datasets, fine-tuning of the pretrained LLM was conducted ten times. Due to group imbalance, group 2 data were undersampled in the training. The performance of the best-performing model in the validation dataset was assessed in the independent test dataset. For testing purposes, two other radiologists (readers 1 and 2) were also involved in classifying radiological reports. The overall accuracy of the fine-tuned LLM, reader 1, and reader 2 was 0.983, 0.969, and 0.969, respectively. The sensitivity for differentiating group 0/1/2/3 by LLM, reader 1, and reader 2 was 1.000/0.948/0.991/1.000, 0.750/0.879/0.996/1.000, and 1.000/0.931/0.978/1.000, respectively. The time required for classification by LLM, reader 1, and reader 2 was 46s/2539s/1538s, respectively. Fine-tuned LLM effectively extracted patients on pretreatment for lung cancer from PACS with comparable performance to radiologists in a shorter time.

7.
JPEN J Parenter Enteral Nutr ; 48(6): 746-755, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38953890

ABSTRACT

BACKGROUND: This study aimed to evaluate if combining low muscle mass with additional body composition abnormalities, such as myosteatosis or adiposity, could improve survival prediction accuracy in a large cohort of gastrointestinal and genitourinary malignancies. METHODS: In total, 2015 patients with surgically-treated gastrointestinal or genitourinary cancer were retrospectively analyzed. Skeletal muscle index, skeletal muscle radiodensity, and visceral/subcutaneous adipose tissue index were determined. The primary outcome was overall survival determined by hospital records. Multivariate Cox hazard models were used to identify independent predictors for poor survival. C-statistics were assessed to quantify the prognostic capability of the models with or without incorporating body composition parameters. RESULTS: Survival curves were significantly demarcated by all 4 measures. Skeletal muscle radiodensity was associated with non-cancer-related deaths but not with cancer-specific survival. The survival outcome of patients with low skeletal muscle index was poor (5-year OS; 65.2%), especially when present in combination with low skeletal muscle radiodensity (5-year overall survival; 50.2%). All examined body composition parameters were independent predictors of lower overall survival. The model for predicting overall survival without incorporating body composition parameters had a c-index of 0.68 but increased to 0.71 with the inclusion of low skeletal muscle index and 0.72 when incorporating both low skeletal muscle index and low skeletal muscle radiodensity/visceral adipose tissue index/subcutaneous adipose tissue index. CONCLUSION: Patients exhibiting both low skeletal muscle index and other body composition abnormalities, particularly low skeletal muscle radiodensity, had poorer overall survival. Models incorporating multiple body composition prove valuable for mortality prediction in oncology settings.


Subject(s)
Body Composition , Gastrointestinal Neoplasms , Muscle, Skeletal , Urogenital Neoplasms , Humans , Male , Female , Middle Aged , Retrospective Studies , Aged , Urogenital Neoplasms/mortality , Gastrointestinal Neoplasms/mortality , Cohort Studies , Prognosis , Proportional Hazards Models , Survival Analysis , Intra-Abdominal Fat , Adult
8.
Neuroradiology ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896237

ABSTRACT

Germinomas frequently cause hydrocephalus, and ventriculoperitoneal shunts (VPS) have been commonly used for their management. Although VPS can potentially serve as a route for peritoneal dissemination of germinomas, the abdominal imaging characteristics of this rare yet important complication remain unknown. In this article, we report the computed tomography imaging findings of diffuse peritoneal dissemination of intracranial germinoma.

10.
J Neurol Sci ; 462: 123090, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38865876

ABSTRACT

BACKGROUND AND PURPOSE: Neuromyelitis optica spectrum disorder is a demyelinating and inflammatory affliction that often leads to visual disturbance. Various imaging techniques, including free-water imaging, have been used to determine neuroinflammation and degeneration. Therefore, this study aimed at determining multimodal imaging differences between patients with neuromyelitis optica spectrum disorder, especially those with visual disturbance, and healthy controls. MATERIALS AND METHODS: Eighty-five neuromyelitis optica spectrum disorder patients and 89 age- and sex-matched healthy controls underwent 3-T magnetic resonance imaging (MRI). We analyzed adjusted brain-predicted age difference, voxel-based morphometry, and free-water-corrected diffusion tensor imaging (DTI) by tract-based spatial statistics in each patient group (MRI-positive/negative neuromyelitis optica spectrum disorder patients with or without a history of visual disturbance) compared with the healthy control group. RESULTS: MRI-positive neuromyelitis optica spectrum disorder patients exhibited reduced volumes of the bilateral thalamus. Tract-based spatial statistics showed diffuse white matter abnormalities in all DTI metrics in MRI-positive neuromyelitis optica spectrum disorder patients with a history of visual disturbance. In MRI-negative neuromyelitis optica spectrum disorder patients with a history of visual disturbance, voxel-based morphometry showed volume reduction of bilateral thalami and optic radiations, and tract-based spatial statistics revealed significantly lower free-water-corrected fractional anisotropy and higher mean diffusivity in the posterior dominant distributions, including the optic nerve radiation. CONCLUSION: Free-water-corrected DTI and voxel-based morphometry analyses may reflect symptoms of visual disturbance in neuromyelitis optica spectrum disorder.


Subject(s)
Diffusion Tensor Imaging , Magnetic Resonance Imaging , Multimodal Imaging , Neuromyelitis Optica , Vision Disorders , Humans , Neuromyelitis Optica/diagnostic imaging , Female , Male , Adult , Middle Aged , Diffusion Tensor Imaging/methods , Vision Disorders/diagnostic imaging , Vision Disorders/etiology , Brain/diagnostic imaging , Brain/pathology , Young Adult , White Matter/diagnostic imaging , White Matter/pathology
11.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 80(7): 750-759, 2024 Jul 20.
Article in Japanese | MEDLINE | ID: mdl-38897968

ABSTRACT

PURPOSE: To verify the usefulness of a deep learning model for determining the presence or absence of contrast-enhanced myocardium in late gadolinium-enhancement images in cardiac MRI. METHODS: We used 174 late gadolinium-enhancement myocardial short-axis images obtained from contrast-enhanced cardiac MRI performed using a 3.0T MRI system at the University of Tokyo Hospital. Of these, 144 images were used for training, extracting a region of interest targeting the heart, scaling signal intensity, and data augmentation were performed to obtain 3312 training images. The interpretation report of two cardiology specialists of our hospital was used as the correct label. A learning model was constructed using a convolutional neural network and applied to 30 test data. In all cases, the acquired mean age was 56.4±12.1 years, and the male-to-female ratio was 1 : 0.82. RESULTS: Before and after data augmentation, sensitivity remained consistent at 93.3%, specificity improved from 0.0% to 100.0%, and accuracy improved from 46.7% to 96.7%. CONCLUSION: The prediction accuracy of the deep learning model developed in this research is high, suggesting its high usefulness.


Subject(s)
Deep Learning , Gadolinium , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Female , Contrast Media , Aged , Heart/diagnostic imaging , Adult
12.
J Imaging Inform Med ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38942939

ABSTRACT

The aim of this study was to investigate the effect of iterative motion correction (IMC) on reducing artifacts in brain magnetic resonance imaging (MRI) with deep learning reconstruction (DLR). The study included 10 volunteers (between September 2023 and December 2023) and 30 patients (between June 2022 and July 2022) for quantitative and qualitative analyses, respectively. Volunteers were instructed to remain still during the first MRI with fluid-attenuated inversion recovery sequence (FLAIR) and to move during the second scan. IMCoff DLR images were reconstructed from the raw data of the former acquisition; IMCon and IMCoff DLR images were reconstructed from the latter acquisition. After registration of the motion images, the structural similarity index measure (SSIM) was calculated using motionless images as reference. For qualitative analyses, IMCon and IMCoff FLAIR DLR images of the patients were reconstructed and evaluated by three blinded readers in terms of motion artifacts, noise, and overall quality. SSIM for IMCon images was 0.952, higher than that for IMCoff images (0.949) (p < 0.001). In qualitative analyses, although noise in IMCon images was rated as increased by two of the three readers (both p < 0.001), all readers agreed that motion artifacts and overall quality were significantly better in IMCon images than in IMCoff images (all p < 0.001). In conclusion, IMC reduced motion artifacts in brain FLAIR DLR images while maintaining similarity to motionless images.

13.
Radiol Phys Technol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837119

ABSTRACT

Changing a window width (WW) alters appearance of noise and contrast of CT images. The aim of this study was to investigate the impact of adjusted WW for deep learning reconstruction (DLR) in detecting hepatocellular carcinomas (HCCs) on CT with DLR. This retrospective study included thirty-five patients who underwent abdominal dynamic contrast-enhanced CT. DLR was used to reconstruct arterial, portal, and delayed phase images. The investigation of the optimal WW involved two blinded readers. Then, five other blinded readers independently read the image sets for detection of HCCs and evaluation of image quality with optimal or conventional liver WW. The optimal WW for detection of HCC was 119 (rounded to 120 in the subsequent analyses) Hounsfield unit (HU), which was the average of adjusted WW in the arterial, portal, and delayed phases. The average figures of merit for the readers for the jackknife alternative free-response receiver operating characteristic analysis to detect HCC were 0.809 (reader 1/2/3/4/5, 0.765/0.798/0.892/0.764/0.827) in the optimal WW (120 HU) and 0.765 (reader 1/2/3/4/5, 0.707/0.769/0.838/0.720/0.791) in the conventional WW (150 HU), and statistically significant difference was observed between them (p < 0.001). Image quality in the optimal WW was superior to those in the conventional WW, and significant difference was seen for some readers (p < 0.041). The optimal WW for detection of HCC was narrower than conventional WW on dynamic contrast-enhanced CT with DLR. Compared with the conventional liver WW, optimal liver WW significantly improved detection performance of HCC.

14.
Endosc Int Open ; 12(6): E772-E780, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38904060

ABSTRACT

Background and study aims Pancreatitis is a potentially lethal adverse event of endoscopic transpapillary placement of a self-expandable metal stent (SEMS) for malignant biliary obstruction (MBO). Deep learning-based image recognition has not been investigated in predicting pancreatitis in this setting. Patients and methods We included 70 patients who underwent endoscopic placement of a SEMS for nonresectable distal MBO. We constructed a convolutional neural network (CNN) model for pancreatitis prediction using a series of pre-procedure computed tomography images covering the whole pancreas (≥ 120,960 augmented images in total). We examined the additional effects of the CNN-based probabilities on the following machine learning models based on clinical parameters: logistic regression, support vector machine with a linear or RBF kernel, random forest classifier, and gradient boosting classifier. Model performance was assessed based on the area under the curve (AUC) in the receiver operating characteristic analysis, positive predictive value (PPV), accuracy, and specificity. Results The CNN model was associated with moderate levels of performance metrics: AUC, 0.67; PPV, 0.45; accuracy, 0.66; and specificity, 0.63. When added to the machine learning models, the CNN-based probabilities increased the performance metrics. The logistic regression model with the CNN-based probabilities had an AUC of 0.74, PPV of 0.85, accuracy of 0.83, and specificity of 0.96, compared with 0.72, 0.78, 0.77, and 0.96, respectively, without the probabilities. Conclusions The CNN-based model may increase predictability for pancreatitis following endoscopic placement of a biliary SEMS. Our findings support the potential of deep learning technology to improve prognostic models in pancreatobiliary therapeutic endoscopy.

15.
PLoS One ; 19(6): e0304993, 2024.
Article in English | MEDLINE | ID: mdl-38848411

ABSTRACT

This study aimed to establish the diagnostic criteria for upper gastrointestinal bleeding (UGIB) using postmortem computed tomography (PMCT). This case-control study enrolled 27 consecutive patients with autopsy-proven UGIB and 170 of the 566 patients without UGIB who died in a university hospital in Japan after treatment and underwent both noncontrast PMCT and conventional autopsy between 2009 and 2020. Patients were randomly allocated to two groups: derivation and validation sets. Imaging findings of the upper gastrointestinal contents, including CT values, were recorded and evaluated for their power to diagnose UGIB in the derivation set and validated in the validation set. In the derivation set, the mean CT value of the upper gastrointestinal contents was 48.2 Hounsfield units (HU) and 22.8 HU in cases with and without UGIB. The optimal cutoff CT value for diagnosing UGIB was ≥27.7 HU derived from the receiver operating characteristic curve analysis (sensitivity, 91.7%; specificity, 81.2%; area under the curve, 0.898). In the validation set, the sensitivity and specificity in diagnosing UGIB for the CT cutoff value of ≥27.7 HU were 84.6% and 77.6%, respectively. In addition to the CT value of ≥27.7 HU, PMCT findings of solid-natured gastrointestinal content and intra/peri-content bubbles ≥4 mm, extracted from the derivation set, increased the specificity for UGIB (96.5% and 98.8%, respectively) but decreased the sensitivity (61.5% and 38.5%, respectively) in the validation set. In diagnosing UGIB on noncontrast PMCT, the cutoff CT value of ≥27.7 HU and solid gastrointestinal content were valid and reproducible diagnostic criteria.


Subject(s)
Autopsy , Gastrointestinal Hemorrhage , Tomography, X-Ray Computed , Humans , Male , Gastrointestinal Hemorrhage/diagnostic imaging , Gastrointestinal Hemorrhage/diagnosis , Female , Aged , Tomography, X-Ray Computed/methods , Middle Aged , Case-Control Studies , Aged, 80 and over , ROC Curve , Adult , Sensitivity and Specificity , Postmortem Imaging
16.
Acad Radiol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897913

ABSTRACT

RATIONALE AND OBJECTIVES: To determine if super-resolution deep learning reconstruction (SR-DLR) improves the depiction of cranial nerves and interobserver agreement when assessing neurovascular conflict in 3D fast asymmetric spin echo (3D FASE) brain MR images, as compared to deep learning reconstruction (DLR). MATERIALS AND METHODS: This retrospective study involved reconstructing 3D FASE MR images of the brain for 37 patients using SR-DLR and DLR. Three blinded readers conducted qualitative image analyses, evaluating the degree of neurovascular conflict, structure depiction, sharpness, noise, and diagnostic acceptability. Quantitative analyses included measuring edge rise distance (ERD), edge rise slope (ERS), and full width at half maximum (FWHM) using the signal intensity profile along a linear region of interest across the center of the basilar artery. RESULTS: Interobserver agreement on the degree of neurovascular conflict of the facial nerve was generally higher with SR-DLR (0.429-0.923) compared to DLR (0.175-0.689). SR-DLR exhibited increased subjective image noise compared to DLR (p ≥ 0.008). However, all three readers found SR-DLR significantly superior in terms of sharpness (p < 0.001); cranial nerve depiction, particularly of facial and acoustic nerves, as well as the osseous spiral lamina (p < 0.001); and diagnostic acceptability (p ≤ 0.002). The FWHM (mm)/ERD (mm)/ERS (mm-1) for SR-DLR and DLR was 3.1-4.3/0.9-1.1/8795.5-10,703.5 and 3.3-4.8/1.4-2.1/5157.9-7705.8, respectively, with SR-DLR's image sharpness being significantly superior (p ≤ 0.001). CONCLUSION: SR-DLR enhances image sharpness, leading to improved cranial nerve depiction and a tendency for greater interobserver agreement regarding facial nerve neurovascular conflict.

17.
Jpn J Radiol ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733470

ABSTRACT

PURPOSE: To compare computed tomography (CT) pulmonary angiography and unenhanced CT to determine the effect of rapid iodine contrast agent infusion on tracheal diameter and lung volume. MATERIAL AND METHODS: This retrospective study included 101 patients who underwent CT pulmonary angiography and unenhanced CT, for which the time interval between them was within 365 days. CT pulmonary angiography was scanned 20 s after starting the contrast agent injection at the end-inspiratory level. Commercial software, which was developed based on deep learning technique, was used to segment the lung, and its volume was automatically evaluated. The tracheal diameter at the thoracic inlet level was also measured. Then, the ratios for the CT pulmonary angiography to unenhanced CT of the tracheal diameter (TDPAU) and both lung volumes (BLVPAU) were calculated. RESULTS: Tracheal diameter and both lung volumes were significantly smaller in CT pulmonary angiography (17.2 ± 2.6 mm and 3668 ± 1068 ml, respectively) than those in unenhanced CT (17.7 ± 2.5 mm and 3887 ± 1086 ml, respectively) (p < 0.001 for both). A statistically significant correlation was found between TDPAU and BLVPAU with a correlation coefficient of 0.451 (95% confidence interval, 0.280-0.594) (p < 0.001). No factor showed a significant association with TDPAU. The type of contrast agent had a significant association for BLVPAU (p = 0.042). CONCLUSIONS: Rapid infusion of iodine contrast agent reduced the tracheal diameter and both lung volumes in CT pulmonary angiography, which was scanned at end-inspiratory level, compared with those in unenhanced CT.

18.
Radiol Case Rep ; 19(8): 3263-3267, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38812597

ABSTRACT

We describe the usefulness of n-butyl-cyanoacrylate (nBCA)-assisted retrograde transvenous obliteration (NARTO) for gastric varices in 3 consecutive patients. In all patients, balloon catheters were inserted into the gastrorenal shunt via the left renal vein. After injecting sclerosant into the gastric varix under balloon occlusion, nBCA was injected to the proximal side of the shunt, to completely embolize the shunt. NARTO is a simple technique to achieve stagnation of the injected sclerosant in gastric varices and to occlude a gastrorenal shunt. This procedure is also cost-effective, and may improve procedure time compared with original or modified balloon-occluded retrograde transvenous obliteration.

19.
Radiographics ; 44(6): e230069, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696321

ABSTRACT

Cytokines are small secreted proteins that have specific effects on cellular interactions and are crucial for functioning of the immune system. Cytokines are involved in almost all diseases, but as microscopic chemical compounds they cannot be visualized at imaging for obvious reasons. Several imaging manifestations have been well recognized owing to the development of cytokine therapies such as those with bevacizumab (antibody against vascular endothelial growth factor) and chimeric antigen receptor (CAR) T cells and the establishment of new disease concepts such as interferonopathy and cytokine release syndrome. For example, immune effector cell-associated neurotoxicity is the second most common form of toxicity after CAR T-cell therapy toxicity, and imaging is recommended to evaluate the severity. The emergence of COVID-19, which causes a cytokine storm, has profoundly impacted neuroimaging. The central nervous system is one of the systems that is most susceptible to cytokine storms, which are induced by the positive feedback of inflammatory cytokines. Cytokine storms cause several neurologic complications, including acute infarction, acute leukoencephalopathy, and catastrophic hemorrhage, leading to devastating neurologic outcomes. Imaging can be used to detect these abnormalities and describe their severity, and it may help distinguish mimics such as metabolic encephalopathy and cerebrovascular disease. Familiarity with the neuroimaging abnormalities caused by cytokine storms is beneficial for diagnosing such diseases and subsequently planning and initiating early treatment strategies. The authors outline the neuroimaging features of cytokine-related diseases, focusing on cytokine storms, neuroinflammatory and neurodegenerative diseases, cytokine-related tumors, and cytokine-related therapies, and describe an approach to diagnosing cytokine-related disease processes and their differentials. ©RSNA, 2024 Supplemental material is available for this article.


Subject(s)
Cytokine Release Syndrome , Neuroimaging , Humans , COVID-19/diagnostic imaging , Cytokine Release Syndrome/diagnostic imaging , Cytokine Release Syndrome/etiology , Cytokines , SARS-CoV-2
20.
J Alzheimers Dis ; 99(4): 1441-1453, 2024.
Article in English | MEDLINE | ID: mdl-38759008

ABSTRACT

Background: Cortical neurodegenerative processes may precede the emergence of disease symptoms in patients with Alzheimer's disease (AD) by many years. No study has evaluated the free water of patients with AD using gray matter-based spatial statistics. Objective: The aim of this study was to explore cortical microstructural changes within the gray matter in AD by using free water imaging with gray matter-based spatial statistics. Methods: Seventy-one participants underwent multi-shell diffusion magnetic resonance imaging, 11C-Pittsburgh compound B positron emission tomography, and neuropsychological evaluations. The patients were divided into two groups: healthy controls (n = 40) and the AD spectrum group (n = 31). Differences between the groups were analyzed using voxel-based morphometry, diffusion tensor imaging, and free water imaging with gray matter-based spatial statistics. Results: Voxel-based morphometry analysis revealed gray matter volume loss in the hippocampus of patients with AD spectrum compared to that in controls. Furthermore, patients with AD spectrum exhibited significantly greater free water, mean diffusivity, and radial diffusivity in the limbic areas, precuneus, frontal lobe, temporal lobe, right putamen, and cerebellum than did the healthy controls. Overall, the effect sizes of free water were greater than those of mean diffusivity and radial diffusivity, and the larger effect sizes of free water were thought to be strongly correlated with AD pathology. Conclusions: This study demonstrates the utility of applying voxel-based morphometry, gray matter-based spatial statistics, free water imaging and diffusion tensor imaging to assess AD pathology and detect changes in gray matter.


Subject(s)
Alzheimer Disease , Gray Matter , Positron-Emission Tomography , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Male , Female , Gray Matter/diagnostic imaging , Gray Matter/pathology , Aged , Diffusion Tensor Imaging , Aniline Compounds , Thiazoles , Neuropsychological Tests , Water , Diffusion Magnetic Resonance Imaging , Middle Aged , Brain/diagnostic imaging , Brain/pathology , Aged, 80 and over , Image Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL