Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Infect Dis ; 10(8): 3052-3058, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39054961

ABSTRACT

Effective molecular strategies are needed to target pathogenic bacteria that thrive and proliferate within mammalian cells, a sanctuary inaccessible to many therapeutics. Herein, we present a class of cationic amphiphilic polyproline helices (CAPHs) with a rigid placement of the cationic moiety on the polyproline helix and assess the role of configuration of the unnatural proline residues making up the CAPHs. By shortening the distance between the guanidinium side chain and the proline backbone of the agents, a notable increase in cellular uptake and antibacterial activity was observed, whereas changing the configuration of the moieties on the pyrrolidine ring from cis to trans resulted in more modest increases. When the combination of these two activities was evaluated, the more rigid CAPHs were exceptionally effective at eradicating intracellular methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella infections within macrophages, significantly exceeding the clearance with the parent CAPH.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Peptides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Peptides/chemistry , Peptides/pharmacology , Macrophages/drug effects , Microbial Sensitivity Tests , Cations/chemistry , Cations/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Humans , Salmonella Infections/microbiology , Salmonella Infections/drug therapy , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology
2.
mSphere ; 9(7): e0027324, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38940508

ABSTRACT

Clostridioides difficile is an enteric pathogen that can cause a range of illnesses from mild diarrhea to pseudomembranous colitis and even death. This pathogen often takes advantage of microbial dysbiosis provoked by antibiotic use. With the increasing incidence and severity of infections, coupled with high recurrence rates, there is an urgent need to identify innovative therapies that can preserve the healthy state of the gut microbiota. In this study, we screened a microbial metabolite library against C. difficile. From a collection of 527 metabolites, we identified 18 compounds with no previously identified antimicrobial activity and metabolites that exhibited potent activity against C. difficile growth. Of these 18 hits, five drugs and three metabolites displayed the most potent anti-C. difficile activity and were subsequently assessed against 20 clinical isolates of C. difficile. These potent agents included ecteinascidin 770 (minimum inhibitory concentration against 50% of isolates [MIC50] ≤0.06 µg/mL); 8-hydroxyquinoline derivatives, such as broxyquinoline and choloroquinaldol (MIC50 = 0.125 µg/mL); ionomycin calcium salt, carbadox, and robenidine hydrochloride (MIC50 = 1 µg/mL); and dronedarone and milbemycin oxime (MIC50 = 4 µg/mL). Unlike vancomycin and fidaxomicin, which are the standard-of-care anti-C. difficile antibiotics, most of these metabolites showed robust bactericidal activity within 2-8 h with minimal impact on the growth of representative members of the normal gut microbiota. These results suggest that the drugs and microbial metabolite scaffolds may offer alternative avenues to address unmet needs in C. difficile disease prevention and treatment. IMPORTANCE: The most frequent infection associated with hospital settings is Clostridioides difficile, which can cause fatal diarrhea and severe colitis, toxic megacolon, sepsis, and leaky gut. Those who have taken antibiotics for other illnesses that affect the gut's healthy microbiota are more susceptible to C. difficile infection (CDI). Recently, some reports showed higher recurrence rates and resistance to anti-C. difficile, which may compromise the efficacy of CDI treatment. Our study is significant because it is anticipated to discover novel microbial metabolites and drugs with microbial origins that are safe for the intestinal flora, effective against C. difficile, and reduce the risk of recurrence associated with CDI.


Subject(s)
Anti-Bacterial Agents , Clostridioides difficile , Microbial Sensitivity Tests , Clostridioides difficile/drug effects , Anti-Bacterial Agents/pharmacology , Humans , Clostridium Infections/microbiology , Clostridium Infections/drug therapy , Gastrointestinal Microbiome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL