Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(8): e0297716, 2024.
Article in English | MEDLINE | ID: mdl-39106290

ABSTRACT

Magnetic drug delivery systems using nanoparticles present a promising opportunity for clinical treatment. This study explored the potential anti-inflammatory properties of RosA- CrFe2O4 nanoparticles. These nanoparticles were developed through rosmarinic acid (RosA) co-precipitation via a photo-mediated extraction technique. XRD, FTIR, and TEM techniques were employed to characterize the nanoparticles, and the results indicated that they had a cubic spinel ferrite (FCC) structure with an average particle size of 25nm. The anti-inflammatory and antioxidant properties of RosA- CrFe2O4 nanoparticles were evaluated by using LPS-induced raw 264.7 macrophages and a hydrogen peroxide scavenging assay, respectively. The results showed that RosA- CrFe2O4 nanoparticles had moderate DPPH scavenging effects with an IC50 value of 59.61±4.52µg/ml. Notably, these nanoparticles effectively suppressed the expression of pro-inflammatory genes (IL-1ß, TNF-α, IL-6, and iNOS) in LPS-stimulated cells. Additionally, the anti-inflammatory activity of RosA- CrFe2O4 nanoparticles was confirmed by reducing the release of secretory pro-inflammatory cytokines (IL-6 and TNF-α) in LPS-stimulated macrophages. This investigation highlights the promising potential of Phyto-mediated CrFe2O4-RosA as an anti-inflammatory and antioxidant agent in biomedical applications.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Cinnamates , Depsides , Ferric Compounds , Magnetite Nanoparticles , Rosmarinic Acid , Depsides/pharmacology , Depsides/chemistry , Animals , Mice , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Cinnamates/chemistry , Cinnamates/pharmacology , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Magnetite Nanoparticles/chemistry , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/metabolism , Lipopolysaccharides/pharmacology , Cytokines/metabolism , Particle Size
2.
PLoS One ; 19(4): e0300203, 2024.
Article in English | MEDLINE | ID: mdl-38564643

ABSTRACT

Recent studies highlighted the role of astrocytes in neuroinflammatory diseases, particularly multiple sclerosis, interacting closely with other CNS components but also with the immune cells. However, due to the difficulty in obtaining human astrocytes, their role in these pathologies is still unclear. In this study we develop an astrocyte in vitro model to evaluate their role in multiple sclerosis after being treated with CSF isolated from both healthy and MS diagnosed patients. Gene expression and ELISA assays reveal that several pro-inflammatory markers IL-1ß, TNF-α and IL-6, were significantly downregulated in astrocytes treated with MS-CSF. In contrast, neurotrophic survival, and growth factors, and GFAP, BDNF, GDNF and VEGF, were markedly elevated upon the same treatment. In summary, this study supports the notion of the astrocyte involvement in MS. The results reveal the neuroprotective role of astrocyte in MS pathogenicity by suppressing excessive inflammation and increasing the expression of tropic factors.


Subject(s)
Multiple Sclerosis , Neuroprotective Agents , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/metabolism , Multiple Sclerosis/pathology , Astrocytes/metabolism , Inflammation/pathology , Tumor Necrosis Factor-alpha/metabolism
3.
Biomed Rep ; 20(3): 36, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38343659

ABSTRACT

The use of plants for nanoparticle (NP) synthesis, grounded in green chemistry principles, is an environmentally friendly and economically viable approach. In the present study, the leaf extract of Elaeagnus angustifolia L. was used as a biosynthetic agent to generate bimetallic zinc oxide NPs. The present study investigated the effect of ZnO NPs on anti-angiogenesis and cell migration. Various bimetallic NPs, including zinc-iron oxide and nickel-zinc oxide, underwent characterization through Fourier-transform infrared spectroscopy and X-ray Diffraction within the 25-65˚ range. Confirmation of NP formation was determined by identifying the surface plasmon resonance peak. MTT assay was used to determine the cytotoxic properties of E. angustifolia L. extracts, ZnO NPs and associated metals in MCF-7 breast cancer cells. The plant extract demonstrated antiproliferative effects at 200 µg/ml, whereas E. ang-Fe2ZnO4 NPs showed varying cytotoxic effects based on concentration. The rat aortic ring and cell migration assays illuminated anti-angiogenic attributes, with the E. ang-Fe2ZnO4 NPs blocking blood vessel development entirely at 100 µg/ml, implying profound anti-angiogenic efficacy. Therefore, E. ang-Fe2ZnO4 NPs may serve a role in antiangiogenic therapy.

4.
Chem Biodivers ; 21(5): e202301739, 2024 May.
Article in English | MEDLINE | ID: mdl-38243670

ABSTRACT

Newly, green metallic-nanoparticles (NPs) have received scientists' interest due to their wide variable medicinal applications owned to their economical synthesis and biologically compatible nature. In this study, we used rosmarinic acid (RosA) to prepare Cu0.5Zn0.5FeO4 NPs and later encapsulated them using PEG polymer. Characterization of NPs was done using the XRD method and SEM imaging. Further, we explored the encapsulated NPs for anti-inflammatory properties by downregulating the expression of pro-inflammatory cytokines mRNA in LPS-stimulated Raw 264.7 cells. Besides, employing DPPH, NO and ABTS radical scavenging assays to examine the antioxidant activity of the synthesized Cu0.5Zn0.5FeO4 NPs. Cu0.5Zn0.5FeO4 NPs revealed moderate antioxidant activity by scavenging DPPH and nitric oxide. We demonstrated that the NPs showed high potential anti-inflammatory activity by suppressing the mRNA and protein levels of pro-inflammatory cytokines in a dose-dependent manner, in LPS-induced Raw 264.7 cells. To our best knowledge, this is the first report where RosA was found to be a suitable phyto source for the green synthesis of Cu0.5Zn0.5FeO4 NPs and their in vitro anti-inflammatory and antioxidant effects. Taken together, our findings suggest that the RosA is a green resource for the eco-friendly synthesis of Cu0.5Zn0.5FeO4/PEG NPs, which further can be employed as a novel anti-inflammatory therapeutic agent.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Cinnamates , Copper , Depsides , Lipopolysaccharides , Metal Nanoparticles , Rosmarinic Acid , Mice , Animals , Depsides/pharmacology , Depsides/chemistry , RAW 264.7 Cells , Cinnamates/chemistry , Cinnamates/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Copper/chemistry , Copper/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Metal Nanoparticles/chemistry , Zinc/chemistry , Zinc/pharmacology , Picrates/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Biphenyl Compounds/chemistry , Nitric Oxide/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide/antagonists & inhibitors , Cell Survival/drug effects , Cytokines/metabolism , Sulfonic Acids/antagonists & inhibitors , Sulfonic Acids/chemistry , Dose-Response Relationship, Drug
5.
Pharm Pract (Granada) ; 21(1): 2788, 2023.
Article in English | MEDLINE | ID: mdl-37090457

ABSTRACT

Background: P2 receptors have been implicated in the release of neurotransmitter and pro-inflammatory cytokines due to their response to neuro-excitatory substances in the microglia. The P2X4, P2X7 and P2Y12 receptors are involved in the development of pain behavior induced by peripheral nerve injury. However, it is not known if blocking P2X4, P2X7 and P2Y12 receptors is associated with the expression and the release of interleukin-1B (IL-1ß), interleukin-6 (IL-6), or tumor necrosis factor-α (TNF-α) in cultured neonatal spinal cord microglia. Objective: For this reason, we examined the effects of P2X4, P2X7 and P2Y12 antagonists on the expression and the release of IL-1ß, IL-6, and TNF-α in ATP-stimulated microglia. Methods: In this study, we observed the effect of A-740003, PSB-12062 and MRS 2395 (P2X4, P2X7 and P2Y12 receptors antagonist, respectively), on the expression and release of IL-1ß, IL-6 and TNF-α by using real-time fluorescence quantitative polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Results: ATP induced the increased expression of IL-1ß, IL-6 and TNF-α at the level of messenger RNA (mRNA). ATP-evoked increase in IL-1ß, IL-6 and TNF-α mRNA expression was inhibited by the P2X4 receptor antagonist A-740003 or P2X7 receptor antagonist PSB-12062, respectively. Similarly, ATP-evoked release of IL-1ß, IL-6 and TNF-α was inhibited by A-740003 and PSB-12062. Furthermore, ATP-evoked increased expression of Iba-1, IL-1ß, IL-6 and TNF-α mRNA, and release of IL-1ß, IL-6 and TNF-α were nearly all blocked after co-administration of A-740003 plus PSB-12062. Finally, ATP-evoked increased gene expression and release of IL-1ß, IL-6 and TNF-α were also inhibited by MRS 2395 (P2Y12 antagonist). Conclusion: These observations suggest a new clue for therapeutic strategies to treat the neuro-inflammation.

6.
Pharm. pract. (Granada, Internet) ; 21(1): 1-7, ene.-mar. 2023. graf, tab
Article in English | IBECS | ID: ibc-218472

ABSTRACT

Background: P2 receptors have been implicated in the release of neurotransmitter and pro-inflammatory cytokines due to their response to neuroexcitatory substances in the microglia. The P2X4, P2X7 and P2Y12 receptors are involved in the development of pain behavior induced by peripheral nerve injury. However, it is not known if blocking P2X4, P2X7 and P2Y12 receptors is associated with the expression and the release of interleukin-1B (IL-1β), interleukin-6 (IL-6), or tumor necrosis factor-α (TNF-α) in cultured neonatal spinal cord microglia. Objective: For this reason, we examined the effects of P2X4, P2X7 and P2Y12 antagonists on the expression and the release of IL-1β, IL-6, and TNF-α in ATP-stimulated microglia. Methods: In this study, we observed the effect of A-740003, PSB-12062 and MRS 2395 (P2X4, P2X7 and P2Y12 receptors antagonist, respectively), on the expression and release of IL-1β, IL-6 and TNF-α by using real-time fluorescence quantitative polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Results: ATP induced the increased expression of IL-1β, IL-6 and TNF-α at the level of messenger RNA (mRNA). ATP-evoked increase in IL-1β, IL-6 and TNF-α mRNA expression was inhibited by the P2X4 receptor antagonist A-740003 or P2X7 receptor antagonist PSB-12062, respectively. Similarly, ATP-evoked release of IL-1β, IL-6 and TNF-α was inhibited by A-740003 and PSB-12062. Furthermore, ATP-evoked increased expression of Iba-1, IL-1β, IL-6 and TNF-α mRNA, and release of IL-1β, IL-6 and TNF-α were nearly all blocked after co-administration of A-740003 plus PSB-12062. Finally, ATP-evoked increased gene expression and release of IL-1β, IL-6 and TNF-α were also inhibited by MRS 2395 (P2Y12 antagonist). Conclusion: These observations suggest a new clue for therapeutic strategies to treat the neuro-inflammation. (AU)


Subject(s)
Animals , Rats , Purinergic P2X Receptor Antagonists , Purinergic P2Y Receptor Antagonists , Microglia , Adenosine Triphosphate , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha , Interleukin-6 , Interleukin-1beta
7.
PLoS One ; 17(10): e0274951, 2022.
Article in English | MEDLINE | ID: mdl-36201519

ABSTRACT

BACKGROUND: Gasdermin A (GSDMA) and gasdermin B (GSDMB) have been associated with childhood and adult asthma in many populations including the Jordanian population. It is also known that IgE plays a crucial role in various allergic disorders, such elevated levels of total serum IgE were detected in asthma and allergic rhinitis. IgE immunoglobulin is responsible for the release of numerous inflammatory mediators, such as histamine and prostaglandins, from mast cells in asthmatic patients. OBJECTIVE: In this study, single nucleotide polymorphisms of GSDMA (rs7212938, T/G) and GSDMB (rs7216389, T/C) in Jordanian population were investigated for their association with total IgE levels in serum of asthmatic children and adult subjects. METHODS: The genetic polymorphism analysis for SNPs was performed using the polymerase chain reaction (PCR)/restriction fragment length polymorphism method (RFLP). Three analysis models were applied to the genotype data: co-dominant, dominant and recessive. RESULTS: Our data demonstrate a significant correlation between GSDMB genetic SNP (rs7216389) and the total IgE serum level. Where one minor allele in the GSDMB gene is sufficient to induce significant changes in the IgE serum levels and plays a role in the pathogenesis of asthma in asthmatic children of the Jordanian population. Suggesting that this polymorphism might have a protective effect against asthma risk. While the presence of the GSDMB polymorphism alone might not be sufficient to associate with the high risk of developing asthma or responding to it in adults in Jordanian population. CONCLUSION: In conclusion, the current study confirms the significant association of GSDMB genetic SNP (rs7216389) with IgE levels in asthma patients in Jordanian population, while no significant correlation of GSDMA and IgE level was found in both child and adult asthmatic patients.


Subject(s)
Asthma , Genetic Predisposition to Disease , Pore Forming Cytotoxic Proteins/genetics , Adult , Asthma/genetics , Case-Control Studies , Child , Genotype , Histamine , Humans , Immunoglobulin E , Neoplasm Proteins/genetics , Polymorphism, Single Nucleotide , Prostaglandins
8.
J Food Biochem ; 45(6): e13730, 2021 06.
Article in English | MEDLINE | ID: mdl-33880765

ABSTRACT

The development of plant-based nano-materials is considered an eco-friendly technology because it does not involve hazardous chemicals. In this study, bimetallic ZnFe2 O4 and CrFe2 O4 nanoparticles were synthesized using an aqueous extract of Boswellia carteri resin. Synthesized ZnFe2 O4 and CrFe2 O4 nanoparticles were characterized by UV-Vis spectroscopy, FTIR, XRD, and HR-TEM. The anti-inflammatory activity was investigated in LPS-stimulated RAW 264.7 macrophages, whereas antioxidant activity was examined using a Hydrogen Peroxide Scavenging Activity Assay, Nitric Oxide Scavenging Activity Assay, and ABTS Radical Scavenging Assay. ZnFe2 O4 and CrFe2 O4 nanoparticles demonstrated a moderate scavenger of H2 O2 with IC50 values; 87.528 ± 8 µg/ml and 146.4468 ± 12 µg/ml, respectively. While they exhibited a strong scavenger of NO with IC50 values; 4.01 ± 0.7 µg/ml and 4.01 ± 0.7µg/ml, respectively. Interestingly, ZnFe2 O4 and CrFe2 O4 nanoparticles revealed an excellent anti-inflammatory activity by dose-dependently suppressing mRNA expressions of IL-1b, IL-6, and TNF-α. Also, ZnFe2 O4 and CrFe2 O4 nanoparticles suppress the protein expression of TNF-α. Together, our results proved that phyto-mediated ZnFe2 O4 and CrFe2 O4 nanoparticles using Boswellia carteri resin have great potential in biomedical applications such as anti-inflammatory and antioxidant. PRACTICAL APPLICATIONS: Our phyto-synthesized chromium iron oxide bimetallic nanoparticles (NPs) have shown a novel and potent anti-inflammatory activity, with remarkable biosafety toward tested macrophages. Zinc iron oxide bimetallic NPs exhibited anti-inflammatory effect with a lesser extent compared to the former, with moderate cytotoxicity against tested macrophages. Both zinc and chromium iron oxide NPs exhibited an equivalent antioxidant activity. Our resin-capped chromium iron oxide NPs are suggested to be a competing nonsteroidal anti-inflammatory agent; it is further recommended to establish advanced animal studies to confirm their biosafety, stability, and anti-inflammatory activity accompanied with the antioxidant activity.


Subject(s)
Boswellia , Nanoparticles , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Plant Extracts
9.
Biomed Rep ; 14(6): 55, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33884198

ABSTRACT

Immunoglobulin E (IgE) serves a crucial role in the pathogenesis of several allergic disorders, and elevated levels of total serum IgE have been associated with asthma. IgE is responsible for the release of several asthma-associated inflammatory mediators from mast cells, such as histamine and prostaglandins. The aim of the present study was to assess the association of interleukin (IL)-13 single nucleotide polymorphism (SNP) rs20541 and forkhead box O3a (FOXO3a) SNP rs13217795 with IgE levels in asthmatic patients and a healthy control group. Genetic polymorphism analysis of SNPs was performed using PCR/restriction fragment length polymorphism. Total serum IgE levels were measured using an ELISA kit. Genotypes were grouped into three models: Co-dominant, dominant and recessive. Major and minor alleles for IL-13 SNP rs20541 and FOXO3a SNP rs13217795 were C and T, whereas for IL-13, they were G and A, respectively. There was a significant association between the IL-13 rs20541 SNP and the total IgE serum levels, in which pure minor alleles were associated with a significant reduction (~5x lower) in IgE serum levels compared with the major alleles in asthmatic subjects and to a lesser extent in the control subjects. Additionally, the FOXO3a rs13217795 SNP was associated with a significant increase in total IgE levels (~5x higher) in the asthmatic patients compared with the control subjects. In conclusion, the present study confirmed that there was a significant association between the IL-13 SNP rs20541 and asthma, and an association between the FOXO3a SNP rs13217795 with asthma pathogenicity in Jordanian subjects.

10.
Anticancer Agents Med Chem ; 21(13): 1767-1772, 2021.
Article in English | MEDLINE | ID: mdl-33342418

ABSTRACT

BACKGROUND: The growing dissatisfaction with the available traditional chemotherapeutic agents has enhanced the need to develop new methods for obtaining materials with more effective and safe anti-cancer properties. Over the past few years, the usage of metallic nanoparticles has been a target for researchers of different scientific and commercial fields due to their tiny sizes, environment-friendly properties, and a wide range of applications. To overcome the obstacles of traditional physical and chemical methods for the synthesis of such nanoparticles, a new, less expensive, and eco-friendly method has been adopted using natural existing organisms as a reducing agent to mediate the synthesis of the desired metallic nanoparticles from their precursors, a process called green biosynthesis of nanoparticles. OBJECTIVE: In the present study, zinc-iron bimetallic nanoparticles (ZnFe2O4) were synthesized via an aqueous extract of Boswellia carteri resin mixed with zinc acetate and iron chloride precursors, and they were tested for their anticancer activity. METHODS: Various analytic methods were applied for the characterization of the phyto synthesized ZnFe2O4, and they were tested for their anticancer activity against MDA-MB-231, K562, MCF-7 cancer cell lines, and normal fibroblasts. RESULTS: Our results demonstrate the synthesis of cubic structured bimetallic nanoparticles ZnFe2O4 with an average diameter of 10.54 nm. MTT cytotoxicity assay demonstrates that our phyto-synthesized ZnFe2O4 nanoparticles exhibited a selective and potent anticancer activity against K562 and MDA-MB-231 cell lines with IC50 values 4.53 µM and 4.19 µM, respectively. CONCLUSION: In conclusion, our biosynthesized ZnFe2O4 nanoparticles show a promising, environmentally friendly, and low coast chemotherapeutic approach against selective cancers with a predicted low adverse side effect toward normal cells. Further, in vivo, advanced animal research should be done to execute their applicability in living organisms.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Boswellia/chemistry , Ferric Compounds/pharmacology , Nanoparticles/chemistry , Plant Extracts/pharmacology , Zinc/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Ferric Compounds/chemistry , Ferric Compounds/isolation & purification , Humans , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Structure-Activity Relationship , Zinc/chemistry , Zinc/isolation & purification
11.
Article in English | MEDLINE | ID: mdl-33380309

ABSTRACT

OBJECTIVE: Achillea fragrantissima L. (Asteraceae) is a traditionally used medicinal herb in the rural communities of Jordan. METHODS: The present study evaluated the efficacy of the ethanol extract of this species on angiogenesis in both, ex vivo using a rat aortic ring assay and in vivo using a rat excision wound model. RESULTS: In concentrations of 50 and 100 µg/ml, the ethanol extract showed angiogenic stimulatory effect and significantly increased length of capillary protrusions around aorta rings of about 60% in comparison to those of untreated aorta rings. In MCF-7 cells, the ethanol extract of A. fragrantissima stimulated the production of VEGF in a dose-dependent manner. 1% and 5% of ethanol extract of A. fragrantissima containing vaseline based ointment was applied on rat excision wounds for six days and found to be effective in wound healing and maturation of the scar. Both preparations resulted in better wound healing when compared to the untreated control group and vaseline- treated group. This effect was comparable to that induced by MEBO, the positive control. CONCLUSION: The results indicate that A. fragrantissima has a pro-angiogenic effect, which may act through the VEGF signaling pathway.


Subject(s)
Achillea , Neovascularization, Physiologic , Plant Extracts , Wound Healing , Achillea/chemistry , Animals , Ethanol , Plant Extracts/pharmacology , Rats , Vascular Endothelial Growth Factor A/metabolism
12.
Inhal Toxicol ; 27(13): 689-93, 2015.
Article in English | MEDLINE | ID: mdl-26484568

ABSTRACT

Waterpipe smoking has become a worldwide epidemic with health consequences that only now are beginning to be understood fully. Because waterpipe use involves inhaling a large volume of toxicant-laden smoke that can cause inflammation, some health consequences may include inflammation-mediated lung injury. Excess matrix metalloproteinase expression is a key step in the etiology of toxicant exposure-driven inflammation and injury. In this study, changes in the level and mRNA of major matrix metalloproteinases (MMP-1, -9, and -12) in the lungs of mice following exposure to waterpipe smoke were investigated. Balb/c mice were exposed to waterpipe smoke for one hour daily, over a period of 2 or 8 weeks. Control mice were exposed to fresh air only. ELISA and real-time PCR techniques were used to determine the protein and mRNA levels of MMP-1, -9, and -12 in the lungs. Our findings showed that MMP-1, -9, and -12 levels in the lung significantly increased after both 2 (p < 0.05) and 8 weeks (p < 0.01) exposures. Similarly, RT-PCR findings showed that mRNA of those proteinases significantly increased following 2 (p < 0.01) and 8 weeks (p < 0.001) exposures. In conclusion, waterpipe smoking is associated strongly with lung injury as measured by elevation in the expression of MMPs in the lung tissue.


Subject(s)
Matrix Metalloproteinase 12 , Matrix Metalloproteinase 13 , Matrix Metalloproteinase 9 , Nicotiana , Smoke/adverse effects , Smoking/metabolism , Animals , Gene Expression Regulation/drug effects , Lung/drug effects , Lung/enzymology , Lung Injury/enzymology , Matrix Metalloproteinase 12/genetics , Matrix Metalloproteinase 12/metabolism , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice, Inbred BALB C , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL