Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 96
1.
J Lipid Res ; 65(6): 100561, 2024 May 17.
Article En | MEDLINE | ID: mdl-38762123

Cholesterol is a major lipid of the animal realm with many biological roles. It is an important component of cellular membranes and a precursor of steroid hormones and bile acids. It is particularly abundant in nervous tissues, and dysregulation of cholesterol metabolism has been associated with neurodegenerative diseases such as Alzheimer's and Huntington's diseases. Deciphering the pathophysiological mechanisms of these disorders often involves animal models such as mice and Drosophila. Accurate quantification of cholesterol levels in the chosen models is a critical point of these studies. In the present work, we compare two common methods, gas chromatography coupled to flame-ionization detection (GC/FID) and a cholesterol oxidase-based fluorometric assay to measure cholesterol in mouse brains and Drosophila heads. Cholesterol levels measured by the two methods were similar for the mouse brain, which presents a huge majority of cholesterol in its sterol profile. On the contrary, depending on the method, measured cholesterol levels were very different for Drosophila heads, which present a complex sterol profile with a minority of cholesterol. We showed that the enzyme-based assay is not specific for cholesterol and detects other sterols as well. This method is therefore not suited for cholesterol measurement in models such as Drosophila. Alternatively, chromatographic methods, such as GC/FID, offer the required specificity for cholesterol quantification. Understanding the limitations of the quantification techniques is essential for reliable interpretation of the results in cholesterol-related research.

2.
NPJ Biofilms Microbiomes ; 10(1): 4, 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38238339

Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA), are required for the structure and function of the retina. Several observational studies indicate that consumption of a diet with relatively high levels of n-3 PUFAs, such as those provided by fish oils, has a protective effect against the development of age-related macular degeneration. Given the accumulating evidence showing the role of gut microbiota in regulating retinal physiology and host lipid metabolism, we evaluated the potential of long-term dietary supplementation with the Gram-positive bacterium Lactobacillus helveticus strain VEL12193 to modulate the retinal n-3 PUFA content. A set of complementary approaches was used to study the impact of such a supplementation on the gut microbiota and host lipid/fatty acid (FA) metabolism. L. helveticus-supplementation was associated with a decrease in retinal saturated FAs (SFAs) and monounsaturated FAs (MUFAs) as well as an increase in retinal n-3 and omega-6 (n-6) PUFAs. Interestingly, supplementation with L. helveticus enriched the retina in C22:5n-3 (docosapentaenoic acid, DPA), C22:6n-3 (DHA), C18:2n-6 (linoleic acid, LA) and C20:3n-6 (dihomo gamma-linolenic acid, DGLA). Long-term consumption of L. helveticus also modulated gut microbiota composition and some changes in OTUs abundance correlated with the retinal FA content. This study provides a proof of concept that targeting the gut microbiota could be an effective strategy to modulate the retinal FA content, including that of protective n-3 PUFAs, thus opening paths for the design of novel preventive and/or therapeutical strategies for retinopathies.


Fatty Acids, Omega-3 , Lactobacillus helveticus , Animals , Mice , Fatty Acids, Omega-3/analysis , Fatty Acids, Omega-3/metabolism , Lactobacillus helveticus/metabolism , Biological Availability , Diet , Retina/chemistry , Retina/metabolism
3.
J Clin Invest ; 133(19)2023 10 02.
Article En | MEDLINE | ID: mdl-37781924

Type 2 diabetes mellitus (T2DM), characterized by hyperglycemia and dyslipidemia, leads to nonproliferative diabetic retinopathy (NPDR). NPDR is associated with blood-retina barrier disruption, plasma exudates, microvascular degeneration, elevated inflammatory cytokine levels, and monocyte (Mo) infiltration. Whether and how the diabetes-associated changes in plasma lipid and carbohydrate levels modify Mo differentiation remains unknown. Here, we show that mononuclear phagocytes (MPs) in areas of vascular leakage in DR donor retinas expressed perilipin 2 (PLIN2), a marker of intracellular lipid load. Strong upregulation of PLIN2 was also observed when healthy donor Mos were treated with plasma from patients with T2DM or with palmitate concentrations typical of those found in T2DM plasma, but not under high-glucose conditions. PLIN2 expression correlated with the expression of other key genes involved in lipid metabolism (ACADVL, PDK4) and the DR biomarkers ANGPTL4 and CXCL8. Mechanistically, we show that lipid-exposed MPs induced capillary degeneration in ex vivo explants that was inhibited by pharmaceutical inhibition of PPARγ signaling. Our study reveals a mechanism linking dyslipidemia-induced MP polarization to the increased inflammatory cytokine levels and microvascular degeneration that characterize NPDR. This study provides comprehensive insights into the glycemia-independent activation of Mos in T2DM and identifies MP PPARγ as a target for inhibition of lipid-activated MPs in DR.


Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Dyslipidemias , Humans , Cytokines/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetic Retinopathy/genetics , Dyslipidemias/metabolism , Lipids , Macrophages/metabolism , Perilipin-2/genetics , Perilipin-2/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Retina/metabolism
4.
BMC Ophthalmol ; 23(1): 404, 2023 Oct 06.
Article En | MEDLINE | ID: mdl-37803473

BACKGROUND: Incomplete vascularization of the retina in preterm infants carries a risk of retinopathy of prematurity (ROP). Progress in neonatal resuscitation in developing countries has led to the survival of an increasing number of premature infants, resulting in an increased rate of ROP and consequently in visual disability. Strategies to reduce ROP involve optimizing oxygen saturation, nutrition, and normalizing factors such as insulin-like growth factor 1 and n-3 long-chain polyunsaturated fatty acids (LC-PUFA). Our previous study, OmegaROP, showed that there is an accumulation or retention of docosahexaenoic acid (DHA) in mothers of infants developing ROP, suggesting abnormalities in the LC-PUFA placental transfer via fatty acid transporting proteins. The present study aims to better understand the LC-PUFA transport dysfunction in the fetoplacental unit during pregnancy and to find a novel target for the prevention of ROP development. METHODS: The study protocol is designed to evaluate the correlation between the expression level of placental fatty acid receptors and ROP occurrence. This ongoing study will include 100 mother-infant dyads: mother-infant dyads born before 29 weeks of gestational age (GA) and mother-infant dyads with full-term pregnancies. Recruitment is planned over a period of 46 months. Maternal and cord blood samples as well as placental tissue samples will be taken following delivery. ROP screening will be performed using wide-field camera imaging according to the International Classification of ROP consensus statement. DISCUSSION: The results of this study will have a tangible impact on public health. Indeed, if we show a correlation between the expression level of placental omega-3 receptors and the occurrence of ROP, it would be an essential step in discovering novel pathophysiological mechanisms involved in this retinopathy. TRIAL REGISTRATION: NCT04819893.


Infant, Premature , Retinopathy of Prematurity , Infant , Infant, Newborn , Humans , Female , Pregnancy , Retinopathy of Prematurity/epidemiology , Fatty Acids , Placenta , Resuscitation , Gestational Age , Risk Factors
6.
Article En | MEDLINE | ID: mdl-36870298

The olfactory mucosa (OM) and olfactory bulb (OB) are neuronal tissues that contribute to the early processing of olfactory information. They contain significant amounts of n-3 and n-6 polyunsaturated fatty acids (PUFAs), which are crucial for neuronal tissue development. In this study, we evaluated the impact of feeding mice diets that are either deficient in α-linolenic acid (ALA) or supplemented with n-3 long-chain PUFAs from gestation to adolescence on the phospholipid and ganglioside composition of these tissues. Both diets modified the levels of some phospholipid classes, notably the phosphatidylserine and phosphatidylethanolamine levels. In addition, the low-ALA diet enriched n-6 PUFAs in the main phospholipid classes of both tissues, while the diet supplemented with n-3 PUFAs enhanced the n-3 PUFA-containing phospholipid species level, mainly in OM. The diets also modulated the levels and profiles of several ganglioside classes in OM and OB. These modifications may have repercussions on the olfactory sensitivity.


Fatty Acids, Omega-3 , Phospholipids , Pregnancy , Female , Mice , Animals , Gangliosides , Weaning , Diet , Fatty Acids, Omega-6
7.
J Lipid Res ; 64(3): 100343, 2023 03.
Article En | MEDLINE | ID: mdl-36773847

Evaluating lipid profiles in human tissues and biofluids is critical in identifying lipid metabolites in dysregulated metabolic pathways. Due to various chemical characteristics, single-run lipid analysis has not yet been documented. Such approach is essential for analyzing pathology-related lipid metabolites. Age-related macular degeneration, the leading cause of vision loss in western countries, is emblematic of this limitation. Several studies have identified alterations in individual lipids but the majority are based on targeted approaches. In this study, we analyzed and identified approximately 500 lipid species in human biofluids (plasma and erythrocytes) and ocular tissues (retina and retinal pigment epithelium) using the complementarity of hydrophilic interaction liquid chromatography (HILIC) and reversed-phase chromatography (RPC), coupled to high-resolution mass spectrometry. For that, lipids were extracted from human eye globes and blood from 10 subjects and lipidomic analysis was carried out through analysis in HILIC and RPC, alternately. Furthermore, we illustrate the advantages and disadvantages of both techniques for lipid characterization. RPC showed greater sensitivity in hydrophobicity-based lipid separation, detecting diglycerides, triglycerides, cholesterol, and cholesteryl esters, whereas no signal of these molecules was obtained in HILIC. However, due to coelution, RPC was less effective in separating polar lipids like phospholipids, which were separated effectively in HILIC in both ionization modes. The complementary nature of these analytical approaches was essential for the detection and identification of lipid classes/subclasses, which can then provide distinct insights into lipid metabolism, a determinant of the pathophysiology of several diseases involving lipids, notably age-related macular degeneration.


Lipidomics , Macular Degeneration , Humans , Lipidomics/methods , Mass Spectrometry/methods , Chromatography, Liquid/methods , Phospholipids
8.
Methods Mol Biol ; 2625: 259-267, 2023.
Article En | MEDLINE | ID: mdl-36653649

Analysis and quantification of ether-lipid phospholipid species-also known as plasmalogens-is a crucial step in the study of the biological functions played by these lipids. Application of analytical separation methods and high-resolution mass spectrometry has gained much attention in this regard, while resolution issues and time-consuming sequences interfered with these advances. Herein, we describe a simple and rapid method for the analysis of plasmalogen (Pl) species by HILIC-HRMS. This method is able to identify and quantify relative levels of ethanolamine-plasmalogens (PlsEtn) and choline-plasmalogens (PlsCho) in biological matrices such as whole blood, plasma, erythrocytes, and also retina. Moreover, we provide a detailed and modified lipid extraction method that is applicable to almost all biological matrices.


Plasmalogens , Tandem Mass Spectrometry , Plasmalogens/analysis , Tandem Mass Spectrometry/methods
9.
Nutr Neurosci ; 26(8): 706-719, 2023 Aug.
Article En | MEDLINE | ID: mdl-35694841

BACKGROUND AND OBJECTIVE: We recently showed that perinatal exposure to diets with unbalanced n-6:n-3 polyunsaturated fatty acid (PUFA) ratios affects the olfactory mucosa (OM) fatty acid composition. To assess the repercussions of these modifications, we investigated the impact of diets unbalanced in n-3 PUFAs on the molecular composition and functionality of the OM in young mice. METHODS: After mating, female mice were fed diets either deficient in α-linolenic acid (LOW diet) or supplemented with n-3 long-chain PUFAs (HIGH diet) during the perinatal period. Weaned male offspring were then fed ad libitum with the same experimental diets for 5 weeks. At 8 weeks of age, olfactory behavior tests were performed in young mice. The fatty acid composition of OM and olfactory cilia, as well as the expression of genes involved in different cellular pathways, were analyzed. The electroolfactograms induced by odorant stimuli were recorded to assess the impact of diets on OM functionality. RESULTS AND CONCLUSION: Both diets significantly modified the fatty acid profiles of OM and olfactory cilia in young mice. They also induced changes in the expression of genes involved in olfactory signaling and in olfactory neuron maturation. The electroolfactogram amplitudes were reduced in mice fed the LOW diet. Nevertheless, the LOW diet and the HIGH diet did not affect mouse olfactory behavior. Our study demonstrated that consumption of diets deficient in or supplemented with n-3 PUFAs during the perinatal and postweaning periods caused significant changes in young mouse OM. However, these modifications did not impair their olfactory capacities.


Fatty Acids, Omega-3 , Pregnancy , Mice , Animals , Male , Female , Fatty Acids, Omega-3/pharmacology , Fatty Acids/metabolism , Diet , Dietary Supplements , Olfactory Mucosa/metabolism
10.
Acta Ophthalmol ; 101(1): e61-e68, 2023 Feb.
Article En | MEDLINE | ID: mdl-35920328

PURPOSE: The aim of this study was to evaluate docosahexaenoic acid (DHA) as a potential antifibrotic agent after glaucoma filtration surgery (GFS) in rats. METHODS: A total of 36 10-week-old Brown Norway rats underwent GFS. Animals were equally divided into three groups: a control group, a DHA group and a mitomycin C (MMC) group. Intraocular pressure (IOP) was measured using a dynamic rebound tonometer, and a photograph of the surgical site was taken on days 1, 3, 7, 10, 14 and 17. The incorporation of DHA into fibroblasts was evaluated by gas chromatography. The expression of alfa-smooth muscle actin (α-SMA) and Smad proteins was assessed by Western blotting. RESULTS: IOP decreased after surgery in animals from the three groups on day 1 after surgery. Over time, IOP remained lower in the DHA and MMC groups than in the control group (median [interquartile range] 8.0 [7.0-8.0] and 8.0 [7.3-8.0] mmHg vs. 9.0 [8.0-9.0] mmHg, respectively; p < 0.001). Bleb area in the DHA and MMC groups remained larger than that of the control group from day 7 to day 14 (3.9 [2.9-5.2] and 3.5 [2.3-4.4] mm2 vs. 2.3 [2.0-2.8] mm2 , respectively; p = 0.0021). We did not observe any change in DHA concentrations in the fibroblasts of the DHA group compared with the other groups. CONCLUSION: The impact of DHA on IOP and bleb area was similar to that of MMC. The mechanisms of action of DHA in rat eye fibroblasts deserve further investigation.


Filtering Surgery , Glaucoma , Trabeculectomy , Animals , Rats , Disease Models, Animal , Docosahexaenoic Acids , Fibrosis , Glaucoma/surgery , Intraocular Pressure , Mitomycin/pharmacology
11.
Front Cell Dev Biol ; 10: 921691, 2022.
Article En | MEDLINE | ID: mdl-36158214

N-3 polyunsaturated fatty acids (PUFAs) may prevent retinal vascular abnormalities observed in oxygen-induced retinopathy, a model of retinopathy of prematurity (ROP). In the OmegaROP prospective cohort study, we showed that preterm infants who will develop ROP accumulate the n-6 PUFA arachidonic acid (ARA) at the expense of the n-3 PUFA docosahexaenoic acid (DHA) in erythrocytes with advancing gestational age (GA). As mice lacking plasmalogens -That are specific phospholipids considered as reservoirs of n-6 and n-3 PUFAs- Display a ROP-like phenotype, the aim of this study was to determine whether plasmalogens are responsible for the changes observed in subjects from the OmegaROP study. Accordingly, preterm infants aged less than 29 weeks GA were recruited at birth in the Neonatal Intensive Care Unit of University Hospital Dijon, France. Blood was sampled very early after birth to avoid any nutritional influence on its lipid composition. The lipid composition of erythrocytes and the structure of phospholipids including plasmalogens were determined by global lipidomics using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). LC-HRMS data confirmed our previous observations by showing a negative association between the erythrocyte content in phospholipid esterified to n-6 PUFAs and GA in infants without ROP (rho = -0.485, p = 0.013 and rho = -0.477, p = 0.015 for ethanolamine and choline total phospholipids, respectively). Phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) species with ARA, namely PtdCho16:0/20:4 (rho = -0.511, p < 0.01) and PtdEtn18:1/20:4 (rho = -0.479, p = 0.015), were the major contributors to the relationship observed. On the contrary, preterm infants developing ROP displayed negative association between PtdEtn species with n-3 PUFAs and GA (rho = -0.380, p = 0.034). They were also characterized by a positive association between GA and the ratio of ethanolamine plasmalogens (PlsEtn) with n-6 PUFA to PlsEtn with n-3 PUFAs (rho = 0.420, p = 0.029), as well as the ratio of PlsEtn with ARA to PlsEtn with DHA (rho = 0.843, p = 0.011). Altogether, these data confirm the potential accumulation of n-6 PUFAs with advancing GA in erythrocytes of infants developing ROP. These changes may be partly due to plasmalogens.

12.
J Oleo Sci ; 71(8): 1117-1133, 2022.
Article En | MEDLINE | ID: mdl-35922928

The present study provides the fatty acid, tocopherol, phytosterol, and polyphenol profiles of some Mediterranean oils extracted from pumpkin, melon, and black cumin seed oils and those of dietary argan seed oil. Gas chromatography analysis revealed that oleic and linoleic acids were the most abundant fatty acids. Argan and melon seed oils exhibited the highest levels of oleic acid (47.32±0.02%) and linoleic acid (58.35±0.26%), respectively. In terms of tocopherols, melon seed oil showed the highest amount (652.1±3.26 mg/kg) with a predominance of γ-tocopherol (633.1±18.81 mg/kg). The phytosterol content varied between 2237.00±37.55 µg/g for argan oil to 6995.55±224.01 µg/g for melon seed oil. High Performance Liquid Chromatography analysis also revealed the presence of several polyphenols: vanillin (0.59 mg equivalents Quercetin/100 g) for melon seed oil, and p-hydroxycinnamic acid (0.04 mg equivalents Quercetin/100 g), coumarine (0.05 mg equivalents Quercetin/100 g), and thymoquinone (1.2 mg equivalents Quercetin/100 g) for black cumin seed oil. The "Kit Radicaux Libres" (KRL) assay used to evaluate the scavenging properties of the oils showed that black cumin seed oil was the most efficient. On the light of the richness of all Mediterranean oil samples in bioactive compounds, the seed oils studied can be considered as important sources of nutrients endowed with cytoprotective properties which benefits in preventing age-related diseases which are characterized by an enhanced oxidative stress.


Phytosterols , Tocopherols , Fatty Acids/analysis , Nutrients/analysis , Plant Oils/chemistry , Polyphenols/analysis , Quercetin , Sterols/analysis , Tocopherols/analysis
13.
Nutrients ; 14(15)2022 Jul 28.
Article En | MEDLINE | ID: mdl-35956273

Plasmalogens (Pls) are glycerophospholipids that play critical roles in the brain. Evidence supports the role of diet and that of the gut microbiota in regulating brain lipids. We investigated the impact of dietary intake of inulin-a soluble fiber used as prebiotic-on the Pl content of the cortex in mice. No global modification in the Pl amounts was observed when evaluated by gas chromatographic analysis of dimethyl acetals (DMAs). However, the analysis of individual molecular species of Pls by liquid chromatography revealed a reduced abundance of major species of ethanolamine Pls (PlsEtn)-PE(P-18:0/22:6) and PE(P-34:1)-in the cortex of mice fed a diet supplemented with inulin. DMA and expression levels of genes (Far-1, Gnpat, Agps, Pla2g6 and Tmem86b) encoding key enzymes of Pl biosynthesis or degradation were not altered in the liver and in the cortex of mice exposed to inulin. In addition, the fatty acid profile and the amount of lyso forms derived from PlsEtn were not modified in the cortex by inulin consumption. To conclude, inulin affects the brain levels of major PlsEtn and further investigation is needed to determine the exact molecular mechanisms involved.


Inulin , Plasmalogens , Animals , Brain/metabolism , Dietary Supplements , Group VI Phospholipases A2/metabolism , Inulin/metabolism , Liver/metabolism , Mice , Plasmalogens/metabolism
14.
Nutrients ; 14(11)2022 May 30.
Article En | MEDLINE | ID: mdl-35684090

(1) Background: To investigate the association between plasma fatty acids (FAs) and dry eye disease (DED) in an elderly population; (2) Methods: We conducted a population-based study, the Montrachet study, in individuals older than 75 years. DED was evaluated using the Schirmer I test without anesthesia, tear film breakup time (TFBUT) measurement and fluorescein corneal staining. Plasma FAs were measured in fasting blood using gas chromatography; (3) Results: A total of 740 subjects with a plasma measurement of 25 FAs were included in this study. The mean age was 82.2 ± 3.7 years, and 62.7% were women. DED was present in 35.0% of participants. We identified a plasma FAs pattern positively associated with DED, characterized by low polyunsaturated fatty acids (PUFAs), high monounsaturated fatty acids (MUFAs) and low saturated fatty acids (SFAs) levels. After adjustment for major confounders, individuals in the upper quartile of the FAs pattern scores compared with those in the lower quartile were more likely to present DED (OR 2.46 (95% CI 1.51-4.01), p = 0.001); (4) Conclusion: In this study, we found that a plasma FAs pattern characterized by low PUFAs, high MUFAs and low SFAs was significantly associated with DED in elderly participants.


Dry Eye Syndromes , Fatty Acids , Aged , Aged, 80 and over , Dry Eye Syndromes/epidemiology , Fasting , Fatty Acids, Monounsaturated , Fatty Acids, Unsaturated , Female , Humans , Male , Tears
15.
Antioxidants (Basel) ; 11(5)2022 Apr 25.
Article En | MEDLINE | ID: mdl-35624701

Polyunsaturated fatty acids (PUFAs) are a class of fatty acids that are closely associated with the development and function of the brain. The most abundant PUFA is docosahexaenoic acid (DHA, 22:6 n-3). In humans, low plasmatic concentrations of DHA have been associated with impaired cognitive function, low hippocampal volumes, and increased amyloid deposition in the brain. Several studies have reported reduced brain DHA concentrations in Alzheimer's disease (AD) patients' brains. Although a number of epidemiological studies suggest that dietary DHA consumption may protect the elderly from developing cognitive impairment or dementia including AD, several review articles report an inconclusive association between omega-3 PUFAs intake and cognitive decline. The source of these inconsistencies might be because DHA is highly oxidizable and its accessibility to the brain is limited by the blood-brain barrier. Thus, there is a pressing need for new strategies to improve DHA brain supply. In the present study, we show for the first time that the intranasal administration of nanovectorized DHA reduces Tau phosphorylation and restores cognitive functions in two complementary murine models of AD. These results pave the way for the development of a new approach to target the brain with DHA for the prevention or treatment of this devastating disease.

16.
Graefes Arch Clin Exp Ophthalmol ; 260(10): 3131-3148, 2022 Oct.
Article En | MEDLINE | ID: mdl-35524799

PURPOSE: In many retinal pathological conditions, rod and cone degeneration differs. For example, the early-onset maculopathy Stargardts disease type 1 (STGD1) is typified by loss of cones while rods are often less affected. We wanted to examine whether there exist intrinsic membrane differences between rods and cones that might explain such features. METHODS: Abca4 mRNA and protein levels were quantified in rod- and cone-enriched samples from wild-type and Nrl-/- mice retinas; rod- and cone-enriched outer segments (ROS and COS respectively) were prepared from pig retinas, and total lipids were analyzed by flame ionization, chromatography, and tandem mass spectrometry. Immunohistochemical staining of cone-rich rodent Arvicanthis ansorgei retinas was conducted, and ultra-high performance liquid chromatography of lipid species in porcine ROS and COS was performed. RESULTS: Abca4 mRNA and Abca4 protein content was significantly higher (50-300%) in cone compared to rod-enriched samples. ROS and COS displayed dramatic differences in several lipids, including very long chain poly-unsaturated fatty acids (VLC-PUFAs), especially docosahexaenoic acid (DHA, 22:6n-3): ROS 20.6% DHA, COS 3.3% (p < 0.001). VLC-PUFAs (> 50 total carbons) were virtually absent from COS. COS were impoverished (> 6× less) in phosphatidylethanolamine compared to ROS. ELOVL4 ("ELOngation of Very Long chain fatty acids 4") antibody labelled Arvicanthis cones only very weakly compared to rods. Finally, there were large amounts (905 a.u.) of the bisretinoid A2PE in ROS, whereas it was much lower (121 a.u., ~ 7.5-fold less) in COS fractions. In contrast, COS contained fivefold higher amounts of all-trans-retinal dimer (115 a.u. compared to 22 a.u. in rods). CONCLUSIONS: Compared to rods, cones expressed higher levels of Abca4 mRNA and Abca4 protein, were highly impoverished in PUFA (especially DHA) and phosphatidylethanolamine, and contained significant amounts of all-trans-retinal dimer. Based on these and other data, we propose that in contrast to rods, cones are preferentially vulnerable to stress and may die through direct cellular toxicity in pathologies such as STGD1.


Phosphatidylethanolamines , Retinal Degeneration , Animals , Docosahexaenoic Acids/metabolism , Murinae/genetics , Murinae/metabolism , Phosphatidylethanolamines/metabolism , RNA, Messenger/genetics , Reactive Oxygen Species/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/metabolism , Retinaldehyde/analogs & derivatives , Swine
17.
Front Cell Dev Biol ; 10: 864599, 2022.
Article En | MEDLINE | ID: mdl-35433704

Plasmalogens are a specific glycerophospholipid subtype characterized by a vinyl-ether bound at their sn-1 moiety. Their biosynthesis is initiated in the peroxisome by dihydroxyacetone phosphate-acyltransferase (DHAPAT), which is encoded by the DAPAT gene. Previous studies have shown that plasmalogen-deficient mice exhibit major physiological dysfunctions including several eye defects, among which abnormal vascular development of the retina and a reactive activation of macroglial Müller cells. Interestingly, plasmalogen deficiency in mice is also associated with a reduced expression of brain connexin 43 (Cx43). Cx43 is the main connexin subtype of retinal glial cells and is involved in several cellular mechanisms such as calcium-based gap junction intercellular communication (GJIC) or cell migration. Thus, the aim of our work was 1) to confirm the alteration of Cx43 expression in the retina of plasmalogen-deficient DAPAT-/- mice and 2) to investigate whether plasmalogens are involved in crucial functions of Müller cells such as GJIC and cell migration. First, we found that plasmalogen deficiency was associated with a significant reduction of Cx43 expression in the retina of DAPAT-/- mice in vivo. Secondly, using a siRNA targeting DHAPAT in vitro, we found that a 50%-reduction of Müller cells content in plasmalogens was sufficient to significantly downregulate Cx43 expression, while increasing its phosphorylation. Furthermore, plasmalogen-depleted Müller cells exhibited several alterations in ATP-induced GJIC, such as calcium waves of higher amplitude that propagated slower to neighboring cells, including astrocytes. Finally, in vitro plasmalogen depletion was also associated with a significant downregulation of Müller cells migration. Taken together, these data confirm that plasmalogens are critical for the regulation of Cx43 expression and for characteristics of retinal Müller glial cells such as GJIC and cell migration.

18.
J Clin Med ; 11(7)2022 Mar 25.
Article En | MEDLINE | ID: mdl-35407436

(1) Background: To compare macular pigment optical density (MPOD) and its spatial distribution between eyes with primary open-angle glaucoma (POAG) and control eyes in an elderly population. (2) Methods: The Montrachet study (Maculopathy Optic Nerve and nutrition neurovAsCular and HEarT) is a population-based study including participants aged 75 years and over. All participants had a slit lamp examination, fundus photographs, and a questionnaire about their medical past history and smoking status. Optic disc spectral domain optical coherence tomography was also performed. All glaucoma-suspected patients were convocated to have a new full examination. We only retained one eye with POAG for analysis in the glaucoma group and one eye without optic neuropathy in the control participants group. MPOD measurements were performed with the two-wavelength autofluorescence method (488 and 514 nm). (3) Results: Overall, 601 eyes had MPOD measurements among 1153 participants. Among the 601 eyes, 48 had POAG. The mean age for the glaucoma and control participants was 84.01 ± 4.22 years and 81.94 ± 3.61 years, respectively (p < 0.001). In the multivariable analysis, we could not find any association between POAG and MPOD at 0.5° (p = 0.336). We found no significant difference regarding MP spatial distribution between the two groups (p = 0.408). (4) Conclusion: In this elderly population-based study, eyes with POAG and control eyes without optic neuropathy did not differ in terms of MPOD and MP spatial distribution.

19.
Steroids ; 183: 109032, 2022 07.
Article En | MEDLINE | ID: mdl-35381271

Peroxisomes play an important role in regulating cell metabolism and RedOx homeostasis. Peroxisomal dysfunctions favor oxidative stress and cell death. The ability of 7ß-hydroxycholesterol (7ß-OHC; 50 µM, 24 h), known to be increased in patients with age-related diseases such as sarcopenia, to trigger oxidative stress, mitochondrial and peroxisomal dysfunction was studied in murine C2C12 myoblasts. The capacity of milk thistle seed oil (MTSO, 100 µg/mL) as well as α-tocopherol (400 µM; reference cytoprotective agent) to counteract the toxic effects of 7ß-OHC, mainly at the peroxisomal level were evaluated. The impacts of 7ß-OHC, in the presence or absence of MTSO or α-tocopherol, were studied with complementary methods: measurement of cell density and viability, quantification of reactive oxygen species (ROS) production and transmembrane mitochondrial potential (ΔΨm), evaluation of peroxisomal mass as well as topographic, morphologic and functional peroxisomal changes. Our results indicate that 7ß-OHC induces a loss of cell viability and a decrease of cell adhesion associated with ROS overproduction, alterations of mitochondrial ultrastructure, a drop of ΔΨm, and several peroxisomal modifications. In the presence of 7ß-OHC, comparatively to untreated cells, important quantitative and qualitative peroxisomal modifications were also identified: a) a reduced number of peroxisomes with abnormal sizes and shapes, mainly localized in cytoplasmic vacuoles, were observed; b) the peroxisomal mass was decreased as indicated by lower protein and mRNA levels of the peroxisomal ABCD3 transporter; c) lower mRNA level of Pex5 involved in peroxisomal biogenesis as well as higher mRNA levels of Pex13 and Pex14, involved in peroxisomal biogenesis and/or pexophagy, was found; d) lower levels of ACOX1 and MFP2 enzymes, implicated in peroxisomal ß-oxidation, were detected; e) higher levels of very-long-chain fatty acids, which are substrates of peroxisomal ß-oxidation, were found. These different cytotoxic effects were strongly attenuated by MTSO, in the same range of order as with α-tocopherol. These findings underline the interest of MTSO and α-tocopherol in the prevention of peroxisomal damages (pexotherapy).


Silybum marianum , alpha-Tocopherol , Animals , Antioxidants/pharmacology , Flavonoids , Humans , Hydroxycholesterols , Mice , Silybum marianum/metabolism , Myoblasts/metabolism , Plant Oils , RNA, Messenger , Reactive Oxygen Species/metabolism , alpha-Tocopherol/pharmacology
20.
Exp Eye Res ; 214: 108867, 2022 01.
Article En | MEDLINE | ID: mdl-34856206

The gut microbiota is a complex ecosystem that inhabits the gastrointestinal tract and consists of archaea, fungi, viruses, and bacteria, with bacteria being dominant. From birth onwards, it coevolves dynamically together with the host. The composition of the gut microbiota is under the influence of a complex interplay between both host and environmental factors. Scientific advances in the past few decades have shown that it is essential in maintaining homeostasis and tipping the balance between health and disease. In addition to its role in food digestion, the gut microbiota is implicated in regulating multiple physiological processes in the host gut mucosa and in distant organs such as the brain. Persistent imbalance between gut microbial communities, termed "dysbiosis," has been associated with several inflammatory and metabolic diseases as well as with central nervous system disorders. In this review, we present the state of the art of current knowledge on an emerging concept, the microbiota-retina axis, and the potential role of its disturbance in the development of retinopathies. We also describe several microbiota-targeting strategies that could constitute preventive and therapeutic tools for retinopathies.


Dysbiosis/metabolism , Gastrointestinal Microbiome/physiology , Retinal Diseases/metabolism , Homeostasis , Humans
...