Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Braz. j. microbiol ; Braz. j. microbiol;43(3): 844-856, July-Sept. 2012. ilus, tab
Article in English | LILACS | ID: lil-656644

ABSTRACT

Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of lignocellulosic biomass hydrolysis is through enzymatic saccharification using cellulases. Significant information has also been gained about the physiology of thermophilic cellulases producers and process development for enzyme production and biomass saccharification. The review discusses the current knowledge on cellulase producing thermophilic microorganisms, their physiological adaptations and control of cellulase gene expression. It discusses the industrial applications of thermophilic cellulases, their cost of production and challenges in cellulase research especially in the area of improving process economics of enzyme production.


Subject(s)
Biomass , Cellulose/analysis , Enzymes/analysis , Ethanol/analysis , Industrial Microbiology , Hydrolysis , Methodology as a Subject
2.
Braz. arch. biol. technol ; Braz. arch. biol. technol;55(4): 497-503, July-Aug. 2012. tab
Article in English | LILACS | ID: lil-645400

ABSTRACT

The aim of this work was to study the effect of some nutritional and environmental factors on the production of cellulases, in particular endoglucanase (CMCase) and exoglucanases (FPase) from Bacillus licheniformis MVS1 and Bacillus sp. MVS3 isolated from an Indian hot spring. The characterization study indicated that the optimum pH and temperature value was 6.5 to 7.0 and 50-55°C, respectively. Maximum cellulases production by both the isolates was detected after 60 h incubation period using wheat and rice straw. The combination of inorganic and organic nitrogen source was suitable for cellulases production. Overall, FPase production was much higher than CMCase production by both of the strains. Between the two thermophiles, the cellulolytic activity was more in B.licheniformis MVS1 than Bacillus sp. MVS3 in varying environmental and nutritional conditions.

3.
Braz J Microbiol ; 43(3): 844-56, 2012 Jul.
Article in English | MEDLINE | ID: mdl-24031898

ABSTRACT

Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of lignocellulosic biomass hydrolysis is through enzymatic saccharification using cellulases. Significant information has also been gained about the physiology of thermophilic cellulases producers and process development for enzyme production and biomass saccharification. The review discusses the current knowledge on cellulase producing thermophilic microorganisms, their physiological adaptations and control of cellulase gene expression. It discusses the industrial applications of thermophilic cellulases, their cost of production and challenges in cellulase research especially in the area of improving process economics of enzyme production.

4.
Article in English | VETINDEX | ID: vti-444926

ABSTRACT

Most of the potential bioprospecting is currently related to the study of the extremophiles and their potential use in industrial processes. Recently microbial cellulases find applications in various industries and constitute a major group of industrial enzymes. Considerable amount of work has been done on microbial cellulases, especially with resurgence of interest in biomass ethanol production employing cellulases and use of cellulases in textile and paper industry. Most efficient method of lignocellulosic biomass hydrolysis is through enzymatic saccharification using cellulases. Significant information has also been gained about the physiology of thermophilic cellulases producers and process development for enzyme production and biomass saccharification. The review discusses the current knowledge on cellulase producing thermophilic microorganisms, their physiological adaptations and control of cellulase gene expression. It discusses the industrial applications of thermophilic cellulases, their cost of production and challenges in cellulase research especially in the area of improving process economics of enzyme production.

SELECTION OF CITATIONS
SEARCH DETAIL