Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Biotechnol Biofuels ; 10: 217, 2017.
Article in English | MEDLINE | ID: mdl-28924452

ABSTRACT

BACKGROUND: Use of bio-based diesel is increasing in Europe. It is currently produced from oilseed crops, but can also be generated from lignocellulosic biomass such as straw. However, removing straw affects soil organic carbon (SOC), with potential consequences for the climate impact of the biofuel. This study assessed the climate impacts and energy balance of biodiesel production from straw using oleaginous yeast, with subsequent biogas production from the residues, with particular emphasis on SOC changes over time. It also explored the impact of four different scenarios for returning the lignin fraction of the biomass to soil to mitigate SOC changes. Climate impact was assessed using two methods, global warming potential (GWP) and a time-dependent temperature model (∆T s ) that describes changes in mean global surface temperature as a function of time or absolute temperature change potential (AGTP). RESULTS: Straw-derived biodiesel reduced GWP by 33-80% compared with fossil fuels and primary fossil energy use for biodiesel production was 0.33-0.80 MJprim/MJ, depending on the scenario studied. Simulations using the time-dependent temperature model showed that a scenario where all straw fractions were converted to energy carriers and no lignin was returned to soil resulted in the highest avoided climate impact. The SOC changes due to straw removal had a large impact on the results, both when using GWP and the time-dependent temperature model. CONCLUSIONS: In a climate perspective, it is preferable to combust straw lignin to produce electricity rather than returning it to the soil if the excess electricity replaces natural gas electricity, according to results from both GWP and time-dependent temperature modelling. Using different methods to assess climate impact did not change the ranking between the scenarios, but the time-dependent temperature model provided information about system behaviour over time that can be important for evaluation of biofuel systems, particularly in relation to climate target deadlines.

2.
Biotechnol Biofuels ; 9: 229, 2016.
Article in English | MEDLINE | ID: mdl-27800015

ABSTRACT

BACKGROUND: Biodiesel is the main liquid biofuel in the EU and is currently mainly produced from vegetable oils. Alternative feedstocks are lignocellulosic materials, which provide several benefits compared with many existing feedstocks. This study examined a technical process and its mass and energy balances to gain a systems perspective of combined biodiesel (FAME) and biogas production from straw using oleaginous yeasts. Important process parameters with a determining impact on overall mass and energy balances were identified and evaluated. RESULTS: In the base case, 41% of energy in the biomass was converted to energy products, primary fossil fuel use was 0.37 MJprim/MJ produced and 5.74 MJ fossil fuels could be replaced per kg straw dry matter. The electricity and heat produced from burning the lignin were sufficient for process demands except in scenarios where the yeast was dried for lipid extraction. Using the residual yeast cell mass for biogas production greatly increased the energy yield, with biogas contributing 38% of total energy products. CONCLUSIONS: In extraction methods without drying the yeast, increasing lipid yield and decreasing the residence time for lipid accumulation are important for the energy and mass balance. Changing the lipid extraction method from wet to dry makes the greatest change to the mass and energy balance. Bioreactor agitation and aeration for lipid accumulation and yeast propagation is energy demanding. Changes in sugar concentration in the hydrolysate and residence times for lipid accumulation greatly affect electricity demand, but have relatively small impacts on fossil energy use (NER) and energy yield (EE). The impact would probably be greater if externally produced electricity were used.

3.
Biotechnol Biofuels ; 9: 40, 2016.
Article in English | MEDLINE | ID: mdl-26900399

ABSTRACT

[This corrects the article DOI: 10.1186/1754-6834-7-35.].

4.
Article in English | MEDLINE | ID: mdl-28066762

ABSTRACT

Biomethane, as a replacement for natural gas, reduces the use of fossil-based sources and supports the intended change from fossil to bio-based industry. The study assessed different biomethane utilization routes for production of methanol, dimethyl ether (DME), and ammonia, as fuel or platform chemicals and combined heat and power (CHP). Energy efficiency and environmental impacts of the different pathways was studied in a life cycle perspective covering the technical system from biomass production to the end product. Among the routes studied, CHP had the highest energy balance and least environmental impact. DME and methanol performed competently in energy balance and environmental impacts in comparison with the ammonia route. DME had the highest total energy output, as fuel, heat, and steam, among the different routes studied. Substituting the bio-based routes for fossil-based alternatives would give a considerable reduction in environmental impacts such as global warming potential and acidification potential for all routes studied, especially CHP, DME, and methanol. Eutrophication potential was mainly a result of biomass and biomethane production, with marginal differences between the different routes.

5.
Biotechnol Biofuels ; 7(1): 35, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24602172

ABSTRACT

The issue of indirect land use changes (ILUC) caused by the promotion of transport biofuels has attracted considerable attention in recent years. In this paper, we reviewed the current literature on modelling work to estimate emissions of greenhouse gases (GHG) caused by ILUC of biofuels. We also reviewed the development of ILUC policies in the EU. Our review of past modelling work revealed that most studies employ economic equilibrium modelling and focus on ethanol fuels, especially with maize as feedstock. It also revealed major variation in the results from the models, especially for biodiesel fuels. However, there has been some convergence of results over time, particularly for ethanol from maize, wheat and sugar cane. Our review of EU policy developments showed that the introduction of fuel-specific ILUC factors has been officially suggested by policymakers to deal with the ILUC of biofuels. The values proposed as ILUC factors in the policymaking process in the case of ethanol fuels are generally in line with the results of the latest modelling exercises, in particular for first-generation ethanol fuels from maize and sugar cane, while those for biodiesel fuels are somewhat higher. If the proposed values were introduced into EU policy, no (first-generation) biodiesel fuel would be able to comply with the EU GHG saving requirements. We identified a conflict between the demand from EU policymakers for exact, highly specific values and the capacity of the current models to supply results with that level of precision. We concluded that alternative policy approaches to ILUC factors should be further explored.

6.
Bioresour Technol ; 101(18): 7192-5, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20435469

ABSTRACT

The aim of the present paper was to investigate the land use, environmental impact and fossil energy use when using biogas instead of natural gas in the production of nitrogen fertilisers. The biogas was assumed to be produced from anaerobic digestion of ley grass and maize. The calculations showed that 1 ha of agricultural land in south-west Sweden can produce 1.7 metric ton of nitrogen in the form of ammonium nitrate per year from ley grass, or 3.6 ton from maize. The impact on global warming, from cradle to gate, was calculated to be lower when producing nitrogen fertiliser from biomass compared with natural gas. Eutrophication and acidification potential was higher in the biomass scenarios. The greatest advantage of the biomass systems however lies in the potential to reduce agriculture's dependency on fossil fuels. In the biomass scenarios, only 2-4 MJ of primary fossil energy was required, while 35 MJ/kgN was required when utilising natural gas.


Subject(s)
Agriculture/statistics & numerical data , Biofuels/statistics & numerical data , Energy Transfer , Environment , Fertilizers/statistics & numerical data , Models, Biological , Nitrogen/chemistry , Nitrogen/metabolism , Sweden
7.
Bioresour Technol ; 99(17): 8034-41, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18440225

ABSTRACT

Ammonium nitrate and calcium ammonium nitrate are the most commonly used straight nitrogen fertilisers in Europe, accounting for 43% of the total nitrogen used for fertilisers. They are both produced in a similar way; carbonate can be added as a last step to produce calcium ammonium nitrate. The environmental impact, fossil energy input and land use from using gasified biomass (cereal straw and short rotation willow (Salix) coppice) as feedstock in ammonium nitrate production were studied in a cradle-to-gate evaluation using life cycle assessment methodology. The global warming potential in the biomass systems was only 22-30% of the impact from conventional production using natural gas. The eutrophication potential was higher for the biomass systems due to nutrient leaching during cultivation, while the acidification was about the same in all systems. The primary fossil energy use was calculated to be 1.45 and 1.37MJ/kg nitrogen for Salix and straw, respectively, compared to 35.14MJ for natural gas. The biomass production was assumed to be self-supporting with nutrients by returning part of the ammonium nitrate produced together with the ash from the gasification. For the production of nitrogen from Salix, it was calculated that 3914kg of nitrogen can be produced every year from 1ha, after that 1.6% of the produced nitrogen has been returned to the Salix production. From wheat straw, 1615kg of nitrogen can be produced annually from 1ha, after that 0.6% of the nitrogen has been returned.


Subject(s)
Biomass , Environment , Fertilizers , Nitrates/chemical synthesis , Salix/growth & development , Eutrophication , Fossil Fuels , Greenhouse Effect
SELECTION OF CITATIONS
SEARCH DETAIL