Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Heliyon ; 10(17): e37199, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39319118

ABSTRACT

Nowadays, water pollution generated from textile effluents is one of the major problems for the human race and ecology. Hence, development of sustainable strategies to lower the water pollution level has become a burning need. In this regard, the present study focuses on the preparation of nano catalyst NiFe2O4 to catalyze the chemical reactions on industrial organic dyes for their fast cleansing from water. By sol-gel auto-combustion technique, NiFe2O4 nanoparticles were synthesized and exposed to thermal process at temperatures of 400, 600, and 800 °C. Highly crystalline phase with spinel cubic structured NiFe2O4 was formed with a crystal size of 18.71 nm, which was confirmed by XRD analysis. The FTIR spectra showed two fundamental absorption bands in the range 597.80-412.59 cm-1, which are the characteristics of tetrahedral M - O and octahedral M - O bond in NiFe2O4. The surface morphology of calcined NiFe2O4 was investigated by scanning electron microscope (SEM). The nanoparticle size analyzer exhibited that the synthesized NiFe2O4 nanoparticles had an average particle size of ∼ 291.3 nm. Three stage decomposition patterns were observed for NiFe2O4, which was analyzed by a temperature programmed STA. Zeta potential analyzer showed that the synthesized sample S1 and S2 were stable in the dispersion medium. Also, NiFe2O4 exhibited optical band gap energies for direct band transitions within the visible spectrum measured to be 1.43-1.45 eV, rendering them effective as photocatalysts under sunlight. The samples showed magnetic measurements by VSM with saturation magnetization, coercivity, remnant magnetization value of 66.81 emu/g, 4.13 Oe and 12.94 emu/g, respectively. The synthesized photocatalyst, NiFe2O4, at 400 °C, significantly degraded three toxic organic pollutants-Methylene blue, Rhodamine B, and Congo Red-under visible light through 'Photo-Fenton' reaction mechanisms. Among the three dyes, Methylene Blue exhibited the highest degradation percentage with a rate constant of 0.0149 min-1 and followed pseudo-first-order kinetic model.

2.
Heliyon ; 10(13): e33578, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040293

ABSTRACT

Copper doped magnesium ferrite, Mg1-xCuxFe2O4(x = 0.0-1.0) nanomaterials were synthesized via. sol-gel method sintered at 600 °C for 2 h. The synthesized materials were characterized using modern sophisticated techniques viz. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy, Energy dispersive x-ray spectroscopy (EDS), Vibrating sample magnetometer, UV-visible diffuse reflectance spectra and Impedance analyzer. XRD analysis revealed that all the samples were single phase cubic spinel structure with Fd3m space group and investigated the change in structural parameters with copper concentration. The average crystallite size in the range of 11-23 nm and lattice parameters decrease with increasing Cu doping, due to the cationic distribution and ionic radius. The SEM images show the agglomeration of the particles with spherical like shape and elemental percentage were obtained from EDX. The saturation magnetization showed an increasing trend with increasing Cu concentration at a certain level and then decreases due to the rearrangement of cations at tetrahedral and octahedral sites. The Coercivity, Retentivity and magnetic crystalline anisotropy increase with changing dopant concentration. The magnetic measurements showed enhanced saturation magnetization at certain level (28.96emu/gm) and increase in coercivity up to 1102 Oe with changing dopant concentration. The estimated band gap energy is found to increase with Cu content. The dielectric constant, dielectric loss and impedance show normal behavior of ferrite. The frequency dependent dielectric constant decrease and tan delta shows a relaxation behavior at low frequencies. The synthesized nano Mg-Cu nanoparticles will be applied as humidity sensor, gas sensor, microwave devices and photocatalyst.

3.
Heliyon ; 10(10): e30810, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38778945

ABSTRACT

In this work, the transformation of waste iron cans to gamma iron oxide (γ-Fe2O3) nanoparticles following acid leaching precipitation method along with their structural, surface chemistry, and magnetic properties was studied. Highly magnetic iron-based nanomaterials, maghemite with high saturation magnetization have been synthesized through an acid leaching technique by carefully tuning of pH and calcination temperature. The phase composition and crystal structure, surface morphology, surface chemistry, and surface composition of the synthesized γ-Fe2O3 nanoparticles were explored by X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDS). The XRD results confirm the cubic spinel structure having crystallite size 26.90-52.15 nm. The XPS study reveals the presence of Fe, O element and the binding energy of Fe (710.31 and 724.48 eV) confirms the formation of γ-Fe2O3 as well. By dynamic light scattering (DLS) method and zeta potential analyzer, the particle size distribution and stability of the systems were investigated. The magnetic behavior of the synthesized γ-Fe2O3 nanoparticles were studied using a vibrating sample magnetometer (VSM) which confirmed the ferrimagnetic particles with saturation magnetization of 54.94 emu/g. The resultant maghemite nanoparticles will be used in photocatalysts and humidity sensing. The net impact of the work stated here is based on the principle of converting waste into useful nanomaterials. Finally, it was concluded that our results can give insights into the design of the synthesis procedure from the precursor to the high-quality gamma iron oxide nanoparticles with high saturation magnetization for different potential applications which are inexpensive and very simple.

4.
Heliyon ; 9(3): e14532, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37020949

ABSTRACT

M-type strontium hexaferrite (SrM) were successfully synthesized from Sr2+ and Fe3+ precursor salt through co-precipitation technique. Different higher sintering temperatures (800-1000 °C) were used to get the desired SrM with variation of Fe3+/Sr2+ mole ratio as well. The characterization of SrM and its properties were investigated using modern instrumental techniques viz. X-ray diffraction (XRD), Fourier Transform Infrared Spectrometer, Scanning Electron Microscopy, Vibrating Sample Magnetometer, UV-Visible NIR Spectrometer, Impedance Analyzer and Thermal Conductivity Meter. The phase of the synthesized SrM were confirmed by comparing the XRD patterns with the standard ICDD data and Reitvelt Refinement for the SrM having Fe3+/Sr2+ ratio 10 and SrM with distinct annealing temperature were performed. The structural parameters, particle size (75 nm-318 nm) and shape of the as prepared samples were changed with calcination temperature as well as mole ratio. The saturation magnetization (73.77-24.27 emu/g), coercivity (3732.28-642.10 Oe) and remanant magnetization (39.15-8.86 emu/g) were varied with calcination temperature and composition. The dielectric properties, optical properties and thermophysical properties were measured for the SrM keeping Fe3+/Sr2+ ratio 10 calcined at 1000 °C. The synthesized SrM can be applied in magnetic recording media and as photocatalyst due to its low coercivity (2764.48 Oe), high saturation magnetization (73.77 emu/g) and low band gap energy (Eg-2.04 eV) respectively.

5.
Gels ; 8(1)2022 Jan 16.
Article in English | MEDLINE | ID: mdl-35049597

ABSTRACT

Herein, the conductivity measurement technique is used to determine the interactions that may occur between polyvinyl pyrrolidone (PVP) polymer and cetylpyridinium chloride (CPC) surfactant in the presence of NaCl and Na2SO4 of fixed concentration at variable temperatures (298.15-323.15 K) with an interval of 5 K. In the absence or presence of salts, we observed three critical micelle concentrations (CMC) for the CPC + PVP mixture. In all situations, CMC1 values of CPC + PVP system were found to be higher in water than in attendance of salts (NaCl and Na2SO4). Temperature and additives have the tendency to affect counterion binding values. Various physico-chemical parameters were analyzed and demonstrated smoothly, including free energy (ΔG0m), enthalpy (ΔH0m) and entropy change (ΔS0m). The micellization process is achieved to be spontaneous based on the obtained negative ΔG0m values. The linearity of the ΔHmo and ΔSmo values is excellent. The intrinsic enthalpy gain (ΔH0*m) and compensation temperature (Tc) were calculated and discussed with logical points. Interactions of polymer hydrophobic chains or the polymer + surfactant associated with amphiphilic surface-active drugs can employ a strong impact on the behavior of the gels.

6.
RSC Adv ; 9(12): 6556-6567, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-35518479

ABSTRACT

Herein, we have investigated the interaction of bovine serum albumin (BSA), the most abundant globular protein, with a conventional cationic surfactant, cetyldimethylethylammonium bromide (CDMEAB), through a conductivity technique in the absence/presence of electrolyte solutions at various temperatures (298.15-323.15 K). The interaction of the protein with drugs/surfactants and other additives plays a crucial role in the body. Hence, the main concern of the study is to extract the impact of BSA on surfactant molecules and vice versa. From the specific conductivity versus concentration of surfactant plots, three different noticeable critical micelle concentration (c*) values were obtained for pure CDMEAB and its mixture with protein/protein + salts. The presence of BSA and electrolytes altered the c* values of CDMEAB revealing interactions among the studied constituents where the salt solutions reduced the c* values and created a convenient environment for favorable micellization. The negative magnitudes achieved for standard free energy changes (ΔG 0 m) suggest spontaneity of micellization while the values of ΔH 0 m and ΔS 0 m signified the existence of some electrostatic and hydrophobic interactions. The values of molar heat capacity (ΔC 0 m) were positive as well as small which was an indication of less structural deformation. Molecular Dynamics (MD) simulation for all atoms revealed that the salt ions promoted non-covalent interaction between BSA and CDMEAB, and such interactions were not observed in the absence of the salt. Protein structure remained nearly same in spite of strong interaction with CDMEAB as evident from the overall RMSD (root-mean-square deviation) values of the alpha carbons and backbone of the protein and RMSF (root-mean-square fluctuation) values of the amino acid residues present in BSA. In this work thermodynamic parameters of transfer (such as ΔG 0 m.tr., ΔH 0 m.tr., and ΔC 0 p.m.tr.) were also evaluated and the results are discussed in detail. Besides, contributions of enthalpy and entropy to free energy changes were also analyzed.

SELECTION OF CITATIONS
SEARCH DETAIL