Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Cancer Discov ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38922581

ABSTRACT

Comprehensive m6A epitranscriptome profiling of primary tumors remains largely uncharted. Here, we profiled the m6A epitranscriptome of 10 non-neoplastic lung (NL) tissues and 51 lung adenocarcinoma (LUAD) tumors, integrating the corresponding transcriptome, proteome and extensive clinical annotations. We identified distinct clusters and genes that were exclusively linked to disease progression through m6A modifications. In comparison with NL tissues, we identified 430 transcripts to be hypo-methylated and 222 to be hyper-methylated in tumors. Among these genes, EML4 emerged as a novel metastatic driver, displaying significant hyper-methylation in tumors. m6A modification promoted the translation of EML4, leading to its widespread overexpression in primary tumors. Functionally, EML4 modulated cytoskeleton dynamics through interacting with ARPC1A, enhancing lamellipodia formation, cellular motility, local invasion, and metastasis. Clinically, high EML4 protein abundance correlated with features of metastasis. METTL3 small molecule inhibitor markedly diminished both EML4 m6A and protein abundance, and efficiently suppressed lung metastases in vivo.

2.
Cell Rep ; 43(6): 114345, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38870012

ABSTRACT

Ferroptosis is an iron-dependent cell death mechanism characterized by the accumulation of toxic lipid peroxides and cell membrane rupture. GPX4 (glutathione peroxidase 4) prevents ferroptosis by reducing these lipid peroxides into lipid alcohols. Ferroptosis induction by GPX4 inhibition has emerged as a vulnerability of cancer cells, highlighting the need to identify ferroptosis regulators that may be exploited therapeutically. Through genome-wide CRISPR activation screens, we identify the SWI/SNF (switch/sucrose non-fermentable) ATPases BRM (SMARCA2) and BRG1 (SMARCA4) as ferroptosis suppressors. Mechanistically, they bind to and increase chromatin accessibility at NRF2 target loci, thus boosting NRF2 transcriptional output to counter lipid peroxidation and confer resistance to GPX4 inhibition. We further demonstrate that the BRM/BRG1 ferroptosis connection can be leveraged to enhance the paralog dependency of BRG1 mutant cancer cells on BRM. Our data reveal ferroptosis induction as a potential avenue for broadening the efficacy of BRM degraders/inhibitors and define a specific genetic context for exploiting GPX4 dependency.


Subject(s)
DNA Helicases , Ferroptosis , Nuclear Proteins , Transcription Factors , Ferroptosis/genetics , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , DNA Helicases/metabolism , DNA Helicases/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , NF-E2-Related Factor 2/metabolism , Cell Line, Tumor , CRISPR-Cas Systems/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics
3.
Genome Biol ; 24(1): 285, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066556

ABSTRACT

BACKGROUND: Expression quantitative trait locus (eQTL) analysis has emerged as an important tool in elucidating the link between genetic variants and gene expression, thereby bridging the gap between risk SNPs and associated diseases. We recently identified and validated a specific case where the methylation of a CpG site influences the relationship between the genetic variant and gene expression. RESULTS: Here, to systematically evaluate this regulatory mechanism, we develop an extended eQTL mapping method, termed DNA methylation modulated eQTL (memo-eQTL). Applying this memo-eQTL mapping method to 128 normal prostate samples enables identification of 1063 memo-eQTLs, the majority of which are not recognized as conventional eQTLs in the same cohort. We observe that the methylation of the memo-eQTL CpG sites can either enhance or insulate the interaction between SNP and gene expression by altering CTCF-based chromatin 3D structure. CONCLUSIONS: This study demonstrates the prevalence of memo-eQTLs paving the way to identify novel causal genes for traits or diseases associated with genetic variations.


Subject(s)
DNA Methylation , Gene Expression Regulation , Male , Humans , Chromosome Mapping , Quantitative Trait Loci , Polymorphism, Single Nucleotide , Genome-Wide Association Study/methods
4.
Nat Cancer ; 4(6): 812-828, 2023 06.
Article in English | MEDLINE | ID: mdl-37277530

ABSTRACT

The Hippo pathway is a key growth control pathway that is conserved across species. The downstream effectors of the Hippo pathway, YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif), are frequently activated in cancers to drive proliferation and survival. Based on the premise that sustained interactions between YAP/TAZ and TEADs (transcriptional enhanced associate domain) are central to their transcriptional activities, we discovered a potent small-molecule inhibitor (SMI), GNE-7883, that allosterically blocks the interactions between YAP/TAZ and all human TEAD paralogs through binding to the TEAD lipid pocket. GNE-7883 effectively reduces chromatin accessibility specifically at TEAD motifs, suppresses cell proliferation in a variety of cell line models and achieves strong antitumor efficacy in vivo. Furthermore, we uncovered that GNE-7883 effectively overcomes both intrinsic and acquired resistance to KRAS (Kirsten rat sarcoma viral oncogene homolog) G12C inhibitors in diverse preclinical models through the inhibition of YAP/TAZ activation. Taken together, this work demonstrates the activities of TEAD SMIs in YAP/TAZ-dependent cancers and highlights their potential broad applications in precision oncology and therapy resistance.


Subject(s)
Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Precision Medicine , Transcription Factors/metabolism , Signal Transduction
5.
Nat Commun ; 14(1): 1787, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997534

ABSTRACT

MYC is a well characterized oncogenic transcription factor in prostate cancer, and CTCF is the main architectural protein of three-dimensional genome organization. However, the functional link between the two master regulators has not been reported. In this study, we find that MYC rewires prostate cancer chromatin architecture by interacting with CTCF protein. Through combining the H3K27ac, AR and CTCF HiChIP profiles with CRISPR deletion of a CTCF site upstream of MYC gene, we show that MYC activation leads to profound changes of CTCF-mediated chromatin looping. Mechanistically, MYC colocalizes with CTCF at a subset of genomic sites, and enhances CTCF occupancy at these loci. Consequently, the CTCF-mediated chromatin looping is potentiated by MYC activation, resulting in the disruption of enhancer-promoter looping at neuroendocrine lineage plasticity genes. Collectively, our findings define the function of MYC as a CTCF co-factor in three-dimensional genome organization.


Subject(s)
Chromatin , Prostatic Neoplasms , Male , Humans , Chromatin/genetics , CCCTC-Binding Factor/metabolism , Gene Expression Regulation , Genes, myc , Prostatic Neoplasms/genetics , Binding Sites
6.
Science ; 378(6615): 68-78, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36201590

ABSTRACT

Establishing causal links between inherited polymorphisms and cancer risk is challenging. Here, we focus on the single-nucleotide polymorphism rs55705857, which confers a sixfold greater risk of isocitrate dehydrogenase (IDH)-mutant low-grade glioma (LGG). We reveal that rs55705857 itself is the causal variant and is associated with molecular pathways that drive LGG. Mechanistically, we show that rs55705857 resides within a brain-specific enhancer, where the risk allele disrupts OCT2/4 binding, allowing increased interaction with the Myc promoter and increased Myc expression. Mutating the orthologous mouse rs55705857 locus accelerated tumor development in an Idh1R132H-driven LGG mouse model from 472 to 172 days and increased penetrance from 30% to 75%. Our work reveals mechanisms of the heritable predisposition to lethal glioma in ~40% of LGG patients.


Subject(s)
Brain Neoplasms , Chromosomes, Human, Pair 8 , Glioma , Isocitrate Dehydrogenase , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Chromosomes, Human, Pair 8/genetics , Glioma/genetics , Glioma/pathology , Humans , Isocitrate Dehydrogenase/genetics , Mice , Mutation , Polymorphism, Single Nucleotide
7.
Mucosal Immunol ; 15(3): 418-427, 2022 03.
Article in English | MEDLINE | ID: mdl-35181738

ABSTRACT

Although eosinophils are important contributors to mucosal immune responses, mechanisms that regulate their accumulation in mucosal-associated lymphoid tissues remain ill-defined. Combining bone marrow chimeras and pharmacological inhibition approaches, here we find that lymphotoxin-beta receptor (LTßR) signaling during the neonatal period is required for the accumulation of eosinophils in the mesenteric lymph nodes (MLN) during an enteric viral infection in adult male and female mice. We demonstrate that MLN stromal cells express genes that are important for eosinophil migration and survival, such as Ccl-11 (eotaxin-1), Ccl7, Ccl9, and Cxcl2, and that expression of most of these genes is downregulated as a consequence of neonatal LTßR blockade. We also find that neonatal LTßR signaling is required for the generation of a rotavirus-specific IgA antibody response in the adult MLN, but eosinophils are dispensable for this response. Collectively, our studies reveal a role for neonatal LTßR signaling in regulating eosinophil numbers in the adult MLN.


Subject(s)
Eosinophils , Lymph Nodes , Animals , Female , Immunity, Mucosal , Immunoglobulin A , Leukocyte Count , Male , Mice
8.
Oncogene ; 40(48): 6601-6613, 2021 12.
Article in English | MEDLINE | ID: mdl-34621019

ABSTRACT

Cancer stem cells (CSCs) are responsible for tumor progression, recurrence, and drug resistance. To identify genetic vulnerabilities of colon cancer, we performed targeted CRISPR dropout screens comprising 657 Drugbank targets and 317 epigenetic regulators on two patient-derived colon CSC-enriched spheroids. Next-generation sequencing of pooled genomic DNAs isolated from surviving cells yielded therapeutic candidates. We unraveled 44 essential genes for colon CSC-enriched spheroids propagation, including key cholesterol biosynthetic genes (HMGCR, FDPS, and GGPS1). Cholesterol biosynthesis was induced in colon cancer tissues, especially CSC-enriched spheroids. The genetic and pharmacological inhibition of HMGCR/FDPS impaired self-renewal capacity and tumorigenic potential of the spheroid models in vitro and in vivo. Mechanistically, HMGCR or FDPS depletion impaired cancer stemness characteristics by activating TGF-ß signaling, which in turn downregulated expression of inhibitors of differentiation (ID) proteins, key regulators of cancer stemness. Cholesterol and geranylgeranyl diphosphate (GGPP) rescued the growth inhibitory and signaling effect of HMGCR/FDPS blockade, implying a direct role of these metabolites in modulating stemness. Finally, cholesterol biosynthesis inhibitors and 5-FU demonstrated antitumor synergy in colon CSC-enriched spheroids, tumor organoids, and xenografts. Taken together, our study unravels novel genetic vulnerabilities of colon CSC-enriched spheroids and suggests cholesterol biosynthesis as a potential target in conjunction with traditional chemotherapy for colon cancer treatment.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , CRISPR-Cas Systems , Cholesterol/biosynthesis , Colonic Neoplasms/drug therapy , Dimethylallyltranstransferase/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Farnesyltranstransferase/antagonists & inhibitors , Geranyltranstransferase/antagonists & inhibitors , Neoplastic Stem Cells/drug effects , Animals , Apoptosis , Cell Proliferation , Cholesterol/chemistry , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Fluorouracil/administration & dosage , Humans , Lovastatin/administration & dosage , Male , Mice , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Zoledronic Acid/administration & dosage
9.
Nat Cell Biol ; 23(9): 1023-1034, 2021 09.
Article in English | MEDLINE | ID: mdl-34489572

ABSTRACT

Cancers adapt to increasingly potent targeted therapies by reprogramming their phenotype. Here we investigated such a phenomenon in prostate cancer, in which tumours can escape epithelial lineage confinement and transition to a high-plasticity state as an adaptive response to potent androgen receptor (AR) antagonism. We found that AR activity can be maintained as tumours adopt alternative lineage identities, with changes in chromatin architecture guiding AR transcriptional rerouting. The epigenetic regulator enhancer of zeste homologue 2 (EZH2) co-occupies the reprogrammed AR cistrome to transcriptionally modulate stem cell and neuronal gene networks-granting privileges associated with both fates. This function of EZH2 was associated with T350 phosphorylation and establishment of a non-canonical polycomb subcomplex. Our study provides mechanistic insights into the plasticity of the lineage-infidelity state governed by AR reprogramming that enabled us to redirect cell fate by modulating EZH2 and AR, highlighting the clinical potential of reversing resistance phenotypes.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Regulatory Networks/physiology , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, Androgen/genetics , Signal Transduction/physiology
10.
Elife ; 102021 06 02.
Article in English | MEDLINE | ID: mdl-34075878

ABSTRACT

High spliceosome activity is a dependency for cancer cells, making them more vulnerable to perturbation of the splicing machinery compared to normal cells. To identify splicing factors important for prostate cancer (PCa) fitness, we performed pooled shRNA screens in vitro and in vivo. Our screens identified heterogeneous nuclear ribonucleoprotein M (HNRNPM) as a regulator of PCa cell growth. RNA- and eCLIP-sequencing identified HNRNPM binding to transcripts of key homeostatic genes. HNRNPM binding to its targets prevents aberrant exon inclusion and backsplicing events. In both linear and circular mis-spliced transcripts, HNRNPM preferentially binds to GU-rich elements in long flanking proximal introns. Mimicry of HNRNPM-dependent linear-splicing events using splice-switching-antisense-oligonucleotides was sufficient to inhibit PCa cell growth. This suggests that PCa dependence on HNRNPM is likely a result of mis-splicing of key homeostatic coding and non-coding genes. Our results have further been confirmed in other solid tumors. Taken together, our data reveal a role for HNRNPM in supporting cancer cell fitness. Inhibition of HNRNPM activity is therefore a potential therapeutic strategy in suppressing growth of PCa and other solid tumors.


Subject(s)
Adenocarcinoma/metabolism , Cell Proliferation , Heterogeneous-Nuclear Ribonucleoprotein Group M/metabolism , Prostatic Neoplasms/metabolism , RNA Splicing , RNA, Circular/biosynthesis , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Heterogeneous-Nuclear Ribonucleoprotein Group M/genetics , Humans , Male , Mice, SCID , PC-3 Cells , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA, Circular/genetics , Tumor Burden , Tumor Cells, Cultured
11.
Nat Commun ; 12(1): 1781, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33741908

ABSTRACT

Prostate cancer (PCa) risk-associated SNPs are enriched in noncoding cis-regulatory elements (rCREs), yet their modi operandi and clinical impact remain elusive. Here, we perform CRISPRi screens of 260 rCREs in PCa cell lines. We find that rCREs harboring high risk SNPs are more essential for cell proliferation and H3K27ac occupancy is a strong indicator of essentiality. We also show that cell-line-specific essential rCREs are enriched in the 8q24.21 region, with the rs11986220-containing rCRE regulating MYC and PVT1 expression, cell proliferation and tumorigenesis in a cell-line-specific manner, depending on DNA methylation-orchestrated occupancy of a CTCF binding site in between this rCRE and the MYC promoter. We demonstrate that CTCF deposition at this site as measured by DNA methylation level is highly variable in prostate specimens, and observe the MYC eQTL in the 8q24.21 locus in individuals with low CTCF binding. Together our findings highlight a causal mechanism synergistically driven by a risk SNP and DNA methylation-mediated 3D genome architecture, advocating for the integration of genetics and epigenetics in assessing risks conferred by genetic predispositions.


Subject(s)
CRISPR-Cas Systems , DNA Methylation , Gene Editing/methods , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Prostatic Neoplasms/genetics , Animals , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Carcinogenesis/genetics , Cell Line, Tumor , Humans , Male , Mice, Inbred NOD , Mice, SCID , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-myc/genetics , Quantitative Trait Loci/genetics , Regulatory Elements, Transcriptional/genetics , Risk Factors
12.
Blood ; 137(16): 2171-2181, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33270841

ABSTRACT

Acute myeloid leukemia (AML) remains a devastating disease in need of new therapies to improve patient survival. Targeted adoptive T-cell therapies have achieved impressive clinical outcomes in some B-cell leukemias and lymphomas but not in AML. Double-negative T cells (DNTs) effectively kill blast cells from the majority of AML patients and are now being tested in clinical trials. However, AML blasts obtained from ∼30% of patients show resistance to DNT-mediated cytotoxicity; the markers or mechanisms underlying this resistance have not been elucidated. Here, we used a targeted clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) screen to identify genes that cause susceptibility of AML cells to DNT therapy. Inactivation of the Spt-Ada-Gcn5-acetyltransferase (SAGA) deubiquitinating complex components sensitized AML cells to DNT-mediated cytotoxicity. In contrast, CD64 inactivation resulted in resistance to DNT-mediated cytotoxicity. Importantly, the level of CD64 expression correlated strongly with the sensitivity of AML cells to DNT treatment. Furthermore, the ectopic expression of CD64 overcame AML resistance to DNTs in vitro and in vivo. Altogether, our data demonstrate the utility of CRISPR/Cas9 screens to uncover mechanisms underlying the sensitivity to DNT therapy and suggest CD64 as a predictive marker for response in AML patients.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , T-Lymphocytes/transplantation , Adoptive Transfer , Animals , CRISPR-Cas Systems , Cells, Cultured , Female , Gene Expression Regulation, Leukemic , Humans , Mice, Inbred NOD , Receptors, IgG/genetics
13.
Front Genet ; 11: 578345, 2020.
Article in English | MEDLINE | ID: mdl-33193699

ABSTRACT

The manifestations of cancerous phenotypes necessitate alterations at different levels of information-flow from genome to proteome. The molecular alterations at different information processing levels serve as the basis for the cancer phenotype to emerge. To understand the underlying mechanisms that drive the acquisition of cancer hallmarks it is required to interrogate cancer cells using multiple levels of information flow represented by different omics - such as genomics, epigenomics, transcriptomics, and proteomics. The advantage of multi-omics data integration comes with a trade-off in the form of an added layer of complexity originating from inherently diverse types of omics-datasets that may pose a challenge to integrate the omics-data in a biologically meaningful manner. The plethora of cancer-specific online omics-data resources, if able to be integrated efficiently and systematically, may facilitate the generation of new biological insights for cancer research. In this review, we provide a comprehensive overview of the online single- and multi-omics resources that are dedicated to cancer. We catalog various online omics-data resources such as The Cancer Genome Atlas (TCGA) along with various TCGA-associated data portals and tools for multi-omics analysis and visualization, the International Cancer Genome Consortium (ICGC), Catalogue of Somatic Mutations in Cancer (COSMIC), The Pathology Atlas, Gene Expression Omnibus (GEO), and PRoteomics IDEntifications (PRIDE). By comparing the strengths and limitations of the respective online resources, we aim to highlight the current biological and technological challenges and possible strategies to overcome these challenges. We outline the available schemes for the integration of the multi-omics dimensions for stratifying cancer patients and biomarker prediction based on the integrated molecular-signatures of cancer. Finally, we propose the multi-omics driven systems-biology approaches to realize the potential of precision onco-medicine as the future of cancer research. We believe this systematic review will encourage scientists and clinicians worldwide to utilize the online resources to explore and integrate the available omics datasets that may provide a window of opportunity to generate new biological insights and contribute to the advancement of the field of cancer research.

14.
Nat Genet ; 52(10): 1011-1017, 2020 10.
Article in English | MEDLINE | ID: mdl-32868907

ABSTRACT

FOXA1 functions as a pioneer transcription factor by facilitating the access to chromatin for steroid hormone receptors, such as androgen receptor and estrogen receptor1-4, but mechanisms regulating its binding to chromatin remain elusive. LSD1 (KDM1A) acts as a transcriptional repressor by demethylating mono/dimethylated histone H3 lysine 4 (H3K4me1/2)5,6, but also acts as a steroid hormone receptor coactivator through mechanisms that are unclear. Here we show, in prostate cancer cells, that LSD1 associates with FOXA1 and active enhancer markers, and that LSD1 inhibition globally disrupts FOXA1 chromatin binding. Mechanistically, we demonstrate that LSD1 positively regulates FOXA1 binding by demethylating lysine 270, adjacent to the wing2 region of the FOXA1 DNA-binding domain. Acting through FOXA1, LSD1 inhibition broadly disrupted androgen-receptor binding and its transcriptional output, and dramatically decreased prostate cancer growth alone and in synergy with androgen-receptor antagonist treatment in vivo. These mechanistic insights suggest new therapeutic strategies in steroid-driven cancers.


Subject(s)
Hepatocyte Nuclear Factor 3-alpha/genetics , Histone Demethylases/genetics , Prostatic Neoplasms/genetics , Protein Binding/genetics , Androgen Receptor Antagonists/pharmacology , Animals , Cell Line, Tumor , Chromatin/genetics , DNA Methylation/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockout Techniques , Gonadal Steroid Hormones/genetics , Heterografts , Humans , Male , Mice , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics
15.
Nat Commun ; 11(1): 441, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31974375

ABSTRACT

Prostate cancer is the second most commonly diagnosed malignancy among men worldwide. Recurrently mutated in primary and metastatic prostate tumors, FOXA1 encodes a pioneer transcription factor involved in disease onset and progression through both androgen receptor-dependent and androgen receptor-independent mechanisms. Despite its oncogenic properties however, the regulation of FOXA1 expression remains unknown. Here, we identify a set of six cis-regulatory elements in the FOXA1 regulatory plexus harboring somatic single-nucleotide variants in primary prostate tumors. We find that deletion and repression of these cis-regulatory elements significantly decreases FOXA1 expression and prostate cancer cell growth. Six of the ten single-nucleotide variants mapping to FOXA1 regulatory plexus significantly alter the transactivation potential of cis-regulatory elements by modulating the binding of transcription factors. Collectively, our results identify cis-regulatory elements within the FOXA1 plexus mutated in primary prostate tumors as potential targets for therapeutic intervention.


Subject(s)
Hepatocyte Nuclear Factor 3-alpha/genetics , Mutation , Prostatic Neoplasms/genetics , Regulatory Sequences, Nucleic Acid , Binding Sites , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Transcription Factors/metabolism
16.
Sci Adv ; 5(12): eaax8898, 2019 12.
Article in English | MEDLINE | ID: mdl-31844668

ABSTRACT

Transcription factors (TFs) are spatially and temporally regulated during gut organ specification. Although accumulating evidence shows aberrant reactivation of developmental programs in cancer, little is known about how TFs drive lineage specification in development and cancer. We first defined gastrointestinal tissue-specific chromatin accessibility and gene expression during development, identifying the dynamic epigenetic regulation of SOX family of TFs. We revealed that Sox2 is not only essential for gastric specification, by maintaining chromatin accessibility at forestomach lineage loci, but also sufficient to promote forestomach/esophageal transformation upon Cdx2 deletion. By comparing our gastrointestinal lineage-specific transcriptome to human gastrointestinal cancer data, we found that stomach and intestinal lineage-specific programs are reactivated in Sox2high /Sox9high and Cdx2high cancers, respectively. By analyzing mice deleted for both Sox2 and Sox9, we revealed their potentially redundant roles in both gastric development and cancer, highlighting the importance of developmental lineage programs reactivated by gastrointestinal TFs in cancer.


Subject(s)
CDX2 Transcription Factor/genetics , Gastrointestinal Tract/growth & development , SOX9 Transcription Factor/genetics , SOXB1 Transcription Factors/genetics , Animals , Cell Lineage/genetics , Epigenesis, Genetic , Gastrointestinal Tract/metabolism , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Mice , Neoplasms/genetics , Organogenesis/genetics , Transcriptome/genetics
17.
Sci Immunol ; 4(42)2019 12 20.
Article in English | MEDLINE | ID: mdl-31862865

ABSTRACT

Redundant mechanisms support immunoglobulin A (IgA) responses to intestinal antigens. These include multiple priming sites [mesenteric lymph nodes (MLNs), Peyer's patches, and isolated lymphoid follicles] and various cytokines that promote class switch to IgA, even in the absence of T cells. Despite these backup mechanisms, vaccination against enteric pathogens such as rotavirus has limited success in some populations. Genetic and environmental signals experienced during early life are known to influence mucosal immunity, yet the mechanisms for how these exposures operate remain unclear. Here, we used rotavirus infection to follow antigen-specific IgA responses through time and in different gut compartments. Using genetic and pharmacological approaches, we tested the role of the lymphotoxin (LT) pathway-known to support IgA responses-at different developmental stages. We found that LT-ß receptor (LTßR) signaling in early life programs intestinal IgA responses in adulthood by affecting antibody class switch recombination to IgA and subsequent generation of IgA antibody-secreting cells within an intact MLN. In addition, early-life LTßR signaling dictates the phenotype and function of MLN stromal cells to support IgA responses in the adult. Collectively, our studies uncover new mechanistic insights into how early-life LTßR signaling affects mucosal immune responses during adulthood.


Subject(s)
Immunoglobulin A/immunology , Lymph Nodes/immunology , Lymphotoxin beta Receptor/immunology , Lymphotoxin-alpha/immunology , Mesentery/immunology , Stromal Cells/immunology , Animals , Feces/microbiology , Female , Immunity, Mucosal , Lymph Nodes/cytology , Lymphotoxin beta Receptor/genetics , Lymphotoxin-alpha/genetics , Male , Mesentery/cytology , Mice, Inbred C57BL , Mice, Knockout
18.
Cancer Cell ; 36(6): 674-689.e6, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31735626

ABSTRACT

Thousands of noncoding somatic single-nucleotide variants (SNVs) of unknown function are reported in tumors. Partitioning the genome according to cistromes reveals the enrichment of somatic SNVs in prostate tumors as opposed to adjacent normal tissue cistromes of master transcription regulators, including AR, FOXA1, and HOXB13. This parallels enrichment of prostate cancer genetic predispositions over these transcription regulators' tumor cistromes, exemplified at the 8q24 locus harboring both risk variants and somatic SNVs in cis-regulatory elements upregulating MYC expression. However, Massively Parallel Reporter Assays reveal that few SNVs can alter the transactivation potential of individual cis-regulatory elements. Instead, similar to inherited risk variants, SNVs accumulate in cistromes of master transcription regulators required for prostate cancer development.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Homeodomain Proteins/metabolism , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Homeodomain Proteins/genetics , Humans , Male , Mutation/genetics , Prostatic Neoplasms/pathology , Up-Regulation/genetics
19.
Nat Med ; 25(10): 1615-1626, 2019 10.
Article in English | MEDLINE | ID: mdl-31591588

ABSTRACT

Oncogenesis is driven by germline, environmental and stochastic factors. It is unknown how these interact to produce the molecular phenotypes of tumors. We therefore quantified the influence of germline polymorphisms on the somatic epigenome of 589 localized prostate tumors. Predisposition risk loci influence a tumor's epigenome, uncovering a mechanism for cancer susceptibility. We identified and validated 1,178 loci associated with altered methylation in tumoral but not nonmalignant tissue. These tumor methylation quantitative trait loci influence chromatin structure, as well as RNA and protein abundance. One prominent tumor methylation quantitative trait locus is associated with AKT1 expression and is predictive of relapse after definitive local therapy in both discovery and validation cohorts. These data reveal intricate crosstalk between the germ line and the epigenome of primary tumors, which may help identify germline biomarkers of aggressive disease to aid patient triage and optimize the use of more invasive or expensive diagnostic assays.


Subject(s)
DNA Methylation/genetics , Epigenome/genetics , Germ-Line Mutation/genetics , Prostatic Neoplasms/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Genome, Human/genetics , Humans , Male , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/genetics , Quantitative Trait Loci/genetics
20.
Sci Rep ; 9(1): 12322, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31444383

ABSTRACT

Proteome-centric studies, although have identified numerous lncRNA-encoded polypeptides, lack differential expression analysis of lncRNA-peptidome across primary tissues, cell lines and cancer states. We established a computational-proteogenomic workflow involving re-processing of publicly available LC-MS/MS data, which facilitated the identification of tissue-specific and universally expressed (UExp) lncRNA-polypeptides across 14 primary human tissues and 11 cell lines. The utility of lncRNA-peptidome as cancer-biomarkers was investigated by re-processing LC-MS/MS data from 92 colon-adenocarcinoma (COAD) and 30 normal colon-epithelium tissues. Intriguingly, a significant upregulation of five lncRNA UExp-polypeptides in COAD tissues was observed. Furthermore, clustering of the UExp-polypeptides led to the classification of COAD patients that coincided with the clinical stratification, underlining the prognostic potential of the UExp-polypeptides. Lastly, we identified differential abundance of the UExp-polypeptides in the plasma of prostate-cancer patients highlighting their potential as plasma-biomarker. The analysis of lncRNA-peptidome may pave the way to identify effective tissue/plasma biomarkers for different cancer types.


Subject(s)
Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Neoplasms/blood , Neoplasms/genetics , Peptides/blood , Proteome/metabolism , RNA, Long Noncoding/blood , Adenocarcinoma/blood , Adenocarcinoma/genetics , Cell Line , Colonic Neoplasms/blood , Colonic Neoplasms/genetics , Humans , Male , Organ Specificity , Prognosis , Prostatic Neoplasms/blood , Prostatic Neoplasms/genetics , Proteogenomics
SELECTION OF CITATIONS
SEARCH DETAIL
...