Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Cell Mater ; 43: 22-38, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35165870

ABSTRACT

Injuries to the knee anterior cruciate ligament (ACL) are common, with a known but poorly understood association with intrinsic and extrinsic risk factors. Some of these factors are enzymatically or mechanically mediated, creating acute focal injuries that may cause significant ligament damage. Understanding the relationship between the basic molecular structure and external loading of the ACL requires a hierarchical connection between the two levels. In the present study, a multi-domain frame was developed connecting the molecular dynamics of the collagen networks to the continuum mechanics of the ACL. The model was used to elucidate the effect of the two possible collagen degradation mechanisms on the aggregate ACL behaviour. Results indicated that collagen content and ACL stiffness were reduced significantly, regardless of the degradation mechanism. Furthermore, the volumetric degradation at the molecular level had a devastating effect on the mechanical behaviour of the ACL when it was compared with the superficial degradation. ACL damage initiation and propagation were clearly influenced by collagen degradation. To summarise, the new insights provided by the predicted results revealed the significance of the collagen network structural integrity to the aggregate mechanical response of the ACL and, hence, underlined the biomechanical factors that may help develop an engineering-based approach towards improving the therapeutic intervention for ACL pathologies.


Subject(s)
Anterior Cruciate Ligament , Knee Joint , Biomechanical Phenomena , Biophysics
2.
BMC Evol Biol ; 16: 13, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26781031

ABSTRACT

BACKGROUND: The ecological differentiation of insects with parasitic life-style is a complex process that may involve phylogenetic constraints as well as morphological and/or behavioural adaptations. In most cases, the relative importance of these driving forces remains unexplored. We investigate here this question for the "Eupelmus urozonus species group" which encompasses parasitoid wasps of potential interest in biological control. This was achieved using seven molecular markers, reliable records on 91 host species and a proxy of the ovipositor length. RESULTS: After using an adequate partitioning scheme, Maximum likelihood and Bayesian approaches provide a well-resolved phylogeny supporting the monophyly of this species group and highlighting its subdivision into three sub-groups. Great variations of both the ovipositor length and the host range (specialist versus generalist) were observed at this scale, with these two features being not significantly constrained by the phylogeny. Ovipositor length was not shown as a significant predictor of the parasitoid host range. CONCLUSIONS: This study provides firstly the first evidence for the strong lability of both the ovipositor's length and the realised host range in a set of phylogenetically related and sympatric species. In both cases, strong contrasts were observed between sister species. Moreover, no significant correlation was found between these two features. Alternative drivers of the ecological differentiation such as interspecific interactions are proposed and the consequences on the recruitment of these parasitoids on native and exotic pests are discussed.


Subject(s)
Wasps/classification , Animals , Bayes Theorem , Ecology , Female , Oviposition , Phylogeny , Wasps/genetics , Wasps/physiology
3.
J Spinal Disord ; 11(3): 221-6, 1998 Jun.
Article in English | MEDLINE | ID: mdl-9657547

ABSTRACT

This study tested the effects of cross-linkage on the fatigue performance of posterior spinal constructs (i.e., AcroMed stainless steel Isola systems). The failure modes encountered during fatigue were also examined. The results of this study confirmed earlier findings that the use of cross-linkage does not significantly affect the stability of posterior constructs during axial loading. Their influence in torsion loading is much more pronounced. During the fatigue tests, posterior stainless steel spinal implants instrumented without cross-linkage reached 1 million cycles at 500- and 750-N loads. When the load was increased to 1,000 N, the number of cycles to failure dropped by two-thirds. These findings demonstrate that the endurance limit was between 750 N and 1,000 N for spinal constructs without cross-linkage, with the limit being closer to 750 N. Devices equipped with one or two cross-linkages reached 1 million cycles at 500 N. The number of cycles to failure dropped dramatically as the load was increased to 750 and 1,000 N. It appears that the endurance limits for spinal devices using cross-linkage should be 500 and 750 N, with the limit closer to the 500-N load. All rod fractures occurred near the junction between the longitudinal and transverse rods. Stress concentration was greatly in the vicinity of that contact point. These results should provide a basis for future improvement in endurance limits of spinal implants equipped with cross-linkage. Higher endurance limits will reduce the toxic effects encountered during fracture modes. The implants will also be better able to withstand the high physiologic loads experienced by obese individuals.


Subject(s)
Bone Screws , Spinal Fusion , Spine/surgery , Stainless Steel , Equipment Design , Equipment Failure , Humans , Materials Testing , Models, Anatomic , Obesity , Spine/physiology , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL