Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sultan Qaboos Univ Med J ; 16(2): e168-74, 2016 May.
Article in English | MEDLINE | ID: mdl-27226907

ABSTRACT

OBJECTIVES: Marine organisms are a rich source of bioactive molecules with potential applications in medicine, biotechnology and industry; however, few bioactive compounds have been isolated from organisms inhabiting the Arabian Gulf and the Gulf of Oman. This study aimed to isolate and screen the anti-cancer activity of compounds and extracts from 40 natural products of marine organisms collected from the Gulf of Oman. METHODS: This study was carried out between January 2012 and December 2014 at the Sultan Qaboos University, Muscat, Oman. Fungi, bacteria, sponges, algae, soft corals, tunicates, bryozoans, mangrove tree samples and sea cucumbers were collected from seawater at Marina Bandar Al-Rowdha and Bandar Al-Khayran in Oman. Bacteria and fungi were isolated using a marine broth and organisms were extracted with methanol and ethyl acetate. Compounds were identified from spectroscopic data. The anti-cancer activity of the compounds and extracts was tested in a Michigan Cancer Foundation (MCF)-7 cell line breast adenocarcinoma model. RESULTS: Eight pure compounds and 32 extracts were investigated. Of these, 22.5% showed strong or medium anti-cancer activity, with malformin A, kuanoniamine D, hymenialdisine and gallic acid showing the greatest activity, as well as the soft coral Sarcophyton sp. extract. Treatment of MCF-7 cells at different concentrations of Sarcophyton sp. extracts indicated the induction of concentration-dependent cell death. Ultrastructural analysis highlighted the presence of nuclear fragmentation, membrane protrusion, blebbing and chromatic segregation at the nuclear membrane, which are typical characteristics of cell death by apoptosis induction. CONCLUSION: Some Omani marine organisms showed high anti-cancer potential. The efficacy, specificity and molecular mechanisms of anti-cancer compounds from Omani marine organisms on various cancer models should be investigated in future in vitro and in vivo studies.

2.
BMC Complement Altern Med ; 14: 60, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24533833

ABSTRACT

BACKGROUND: Azoxymethane (AOM) is a potent carcinogenic agent commonly used to induce colon cancer in rats; the cytotoxicity of AOM is considered to mediate oxidative stress. This study investigated the chemopreventive effect of three natural extracts [pomegranate peel extract (PomPE), papaya peel extract (PapPE) and seaweed extract (SE)] against AOM-induced oxidative stress and carcinogenesis in rat colon. METHODS: Eighty Sprague-Dawley rats (aged 4 weeks) were randomly divided into 8 groups (10 rats/group). Control group was fed a basal diet; AOM-treated group was fed a basal diet and received AOM intraperitonial injections for two weeks at a dose of 15 mg/kg bodyweight, whereas the other six groups were received oral supplementation of PomPE, PapPE or SE, in the presence or absence of AOM injection. All animals were continuously fed ad-libitum until aged 16 weeks, then all rats were sacrificed and the colon tissues were examined microscopically for pathological changes and aberrant crypt foci (ACF) development, genotoxicity (induced micronuclei (MN) cells enumeration), and glutathione and lipid peroxidation. RESULTS: Our results showed that AOM-induced ACF development and pathological changes in the colonic mucosal tissues, increased bone marrow MN cells and oxidative stress (glutathione depletion, lipid peroxidation) in rat colonic cells. The concomitant treatment of AOM with PomPE, PapPE or SE significantly ameliorated the cytotoxic effects of AOM. CONCLUSIONS: The results of this study provide in-vivo evidence that PomPE, PapPE and SE reduced the AOM-induced colon cancer in rats, through their potent anti-oxidant activities.


Subject(s)
Carcinogenesis/drug effects , Colon/drug effects , Colonic Neoplasms/drug therapy , Fruit , Oxidative Stress/drug effects , Plant Extracts/therapeutic use , Seaweed , Animals , Anticarcinogenic Agents/pharmacology , Anticarcinogenic Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/therapeutic use , Azoxymethane/adverse effects , Carica , Colon/metabolism , Colon/pathology , Colonic Neoplasms/chemically induced , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Dietary Supplements , Glutathione/metabolism , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Lipid Peroxidation/drug effects , Lythraceae , Male , Micronuclei, Chromosome-Defective , Phytotherapy , Plant Extracts/pharmacology , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL