Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Digit Health ; 9: 20552076231172632, 2023.
Article in English | MEDLINE | ID: mdl-37256015

ABSTRACT

Lung cancer is the second foremost cause of cancer due to which millions of deaths occur worldwide. Developing automated tools is still a challenging task to improve the prediction. This study is specifically conducted for detailed posterior probabilities analysis to unfold the network associations among the gray-level co-occurrence matrix (GLCM) features. We then ranked the features based on t-test. The Cluster Prominence is selected as target node. The association and arc analysis were determined based on mutual information. The occurrence and reliability of selected cluster states were computed. The Cluster Prominence at state ≤330.85 yielded ROC index of 100%, relative Gini index of 99.98%, and relative Gini index of 100%. The proposed method further unfolds the dynamics and to detailed analysis of computed features based on GLCM features for better understanding of the hidden dynamics for proper diagnosis and prognosis of lung cancer.

2.
PLoS One ; 18(4): e0284166, 2023.
Article in English | MEDLINE | ID: mdl-37043458

ABSTRACT

As the use of digital subscription services like electronic tickets (E-ticketing) has grown in the age of e-commerce, so too have instances of copyright and violation. Because it is dependent on the centralized authority administration of authoritative institutions, the traditional E-ticketing system has a significant cost associated with it. Blockchain, which is a distributed system, has the characteristics of decentralization, anonymity, auditability, security, and persistency. These attributes allow it to address the problems that are currently being experienced by the E-ticketing system. In this study, we present a framework for E-ticketing that makes use of blockchain technology. The blockchain-based electronic ticketing model eliminates the involvement of third parties while also lowering the potential of data leaks and improving users' levels of privacy. This is accomplished by separating the credential information of users from the financial transactions. In the meanwhile, a blockchain implementation of the existing E-ticketing architecture has the potential to improve throughput, reduce the amount of redundant work, and boost the efficiency of consensus. An examination of the experimental data shows that the framework has a number of advantages, some of which are a high throughput, flexible scalability, and efficient ticket holding times.


Subject(s)
Blockchain , Privacy , Technology , Computer Communication Networks
SELECTION OF CITATIONS
SEARCH DETAIL