Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 522
Filter
1.
Res Vet Sci ; 176: 105348, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38970868

ABSTRACT

Scrapie is a fatal, transmissible neurodegenerative disease that affects sheep and goats. Replication of PrPSc in the lymphoid tissue allows for the scrapie agent to be shed into the environment. Brain and retropharyngeal lymph node (RPLN) from a sheep inoculated with the classical scrapie agent was used to compare infectivity of these tissues. Nine Cheviot sheep were used in this study, randomly assigned into two groups based on inocula. Group one (n = 4) received 1 mL of 10% brain homogenate and consisted of all VRQ/VRQ PRNP genotypes. Group two (n = 5) had three sheep receive 1 mL of a 10% RPLN homogenate (13-7), and two sheep receive 0.5 mL of a 10% RPLN homogenate (13-7) because of availability. Sheep in group two were also VRQ/VRQ genotyped. Brain and lymph tissues were tested by histopathology, immunohistochemistry, western blot, enzyme immunoassay, and conformational stability for PrPSc accumulation. Both groups displayed clinical signs of ataxia, moribund, head tremors, circling, and lethargy prior to euthanizing at an average of 16.2 mpi (months post inoculation) (group one) or 19.56 mpi (group two). Additionally, brainstem tissue from both groups displayed the same apparent molecular mass by western blot examination. Spongiform lesion profiling and PrPSc accumulation in brain and lymph tissues were similar in both groups. Conformational stability results displayed no significant difference in obex or RPLN tissue. Overall, these data suggest lymph nodes containing the classical scrapie agent are infectious to sheep, aiding in the understanding of sheep scrapie transmission.

2.
Photochem Photobiol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38922878

ABSTRACT

N-phenyl dibenzothiophene sulfoximine has been demonstrated to produce phenyl nitrene and dibenzothiophene S-oxide upon irradiation with UV-A light, and dibenzothiophene S-oxide upon further irradiation releases triplet atomic oxygen. Thus, N-phenyl dibenzothiophene sulfoximine exhibits a rare dual-release capability in its photochemistry. In this work, N-substituted dibenzothiophene sulfoximine derivatives are irradiated with UV-A light to compare their photochemistry and quantum yield of dibenzothiophene S-oxide production with that of N-phenyl dibenzothiophene sulfoximine. Both N-aryl and N-alkyl derivatives of dibenzothiophene sulfoximine are examined to observe their effects on the quantum yield of the photolysis reaction. Adding electron withdrawing N-aryl substituents is shown to increase the quantum yield of dibenzothiophene S-oxide production, while adding electron donating N-aryl substituents is shown to decrease the quantum yield. The quantum yield was slightly lowered or not increased by most N-alkyl substituents. Furthermore, the quantum yield was not augmented by branching and steric hindrance effects associated with the N-alkyl substituents. These results suggest that electronic modulation of the sulfoximine bonds affects the observed photolysis reaction.

3.
Nat Cancer ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831058

ABSTRACT

Tumor progression is accompanied by fibrosis, a condition of excessive extracellular matrix accumulation, which is associated with diminished antitumor immune infiltration. Here we demonstrate that tumor-associated macrophages (TAMs) respond to the stiffened fibrotic tumor microenvironment (TME) by initiating a collagen biosynthesis program directed by transforming growth factor-ß. A collateral effect of this programming is an untenable metabolic milieu for productive CD8+ T cell antitumor responses, as collagen-synthesizing macrophages consume environmental arginine, synthesize proline and secrete ornithine that compromises CD8+ T cell function in female breast cancer. Thus, a stiff and fibrotic TME may impede antitumor immunity not only by direct physical exclusion of CD8+ T cells but also through secondary effects of a mechano-metabolic programming of TAMs, which creates an inhospitable metabolic milieu for CD8+ T cells to respond to anticancer immunotherapies.

4.
Science ; 384(6700): eadk0850, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843329

ABSTRACT

To delineate the mechanisms by which the ERK1 and ERK2 mitogen-activated protein kinases support mutant KRAS-driven cancer growth, we determined the ERK-dependent phosphoproteome in KRAS-mutant pancreatic cancer. We determined that ERK1 and ERK2 share near-identical signaling and transforming outputs and that the KRAS-regulated phosphoproteome is driven nearly completely by ERK. We identified 4666 ERK-dependent phosphosites on 2123 proteins, of which 79 and 66%, respectively, were not previously associated with ERK, substantially expanding the depth and breadth of ERK-dependent phosphorylation events and revealing a considerably more complex function for ERK in cancer. We established that ERK controls a highly dynamic and complex phosphoproteome that converges on cyclin-dependent kinase regulation and RAS homolog guanosine triphosphatase function (RHO GTPase). Our findings establish the most comprehensive molecular portrait and mechanisms by which ERK drives KRAS-dependent pancreatic cancer growth.


Subject(s)
Mitogen-Activated Protein Kinase 1 , Mitogen-Activated Protein Kinase 3 , Pancreatic Neoplasms , Phosphoproteins , Proteome , Proto-Oncogene Proteins p21(ras) , Animals , Humans , Mice , Cell Line, Tumor , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mutation , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Phosphoproteins/metabolism , Phosphoproteins/genetics , Phosphorylation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , HEK293 Cells
5.
Science ; 384(6700): eadk0775, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38843331

ABSTRACT

How the KRAS oncogene drives cancer growth remains poorly understood. Therefore, we established a systemwide portrait of KRAS- and extracellular signal-regulated kinase (ERK)-dependent gene transcription in KRAS-mutant cancer to delineate the molecular mechanisms of growth and of inhibitor resistance. Unexpectedly, our KRAS-dependent gene signature diverges substantially from the frequently cited Hallmark KRAS signaling gene signature, is driven predominantly through the ERK mitogen-activated protein kinase (MAPK) cascade, and accurately reflects KRAS- and ERK-regulated gene transcription in KRAS-mutant cancer patients. Integration with our ERK-regulated phospho- and total proteome highlights ERK deregulation of the anaphase promoting complex/cyclosome (APC/C) and other components of the cell cycle machinery as key processes that drive pancreatic ductal adenocarcinoma (PDAC) growth. Our findings elucidate mechanistically the critical role of ERK in driving KRAS-mutant tumor growth and in resistance to KRAS-ERK MAPK targeted therapies.


Subject(s)
Carcinoma, Pancreatic Ductal , Extracellular Signal-Regulated MAP Kinases , Gene Expression Regulation, Neoplastic , MAP Kinase Signaling System , Mutation , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Transcriptome , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , HEK293 Cells
6.
Nat Chem Biol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783133

ABSTRACT

Engineered living materials combine the advantages of biological and synthetic systems by leveraging genetic and metabolic programming to control material-wide properties. Here, we demonstrate that extracellular electron transfer (EET), a microbial respiration process, can serve as a tunable bridge between live cell metabolism and synthetic material properties. In this system, EET flux from Shewanella oneidensis to a copper catalyst controls hydrogel cross-linking via two distinct chemistries to form living synthetic polymer networks. We first demonstrate that synthetic biology-inspired design rules derived from fluorescence parameterization can be applied toward EET-based regulation of polymer network mechanics. We then program transcriptional Boolean logic gates to govern EET gene expression, which enables design of computational polymer networks that mechanically respond to combinations of molecular inputs. Finally, we control fibroblast morphology using EET as a bridge for programmed material properties. Our results demonstrate how rational genetic circuit design can emulate physiological behavior in engineered living materials.

7.
Eur J Nutr ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750160

ABSTRACT

PURPOSE: The aim of this study was to investigate the effects of different ω-3 polyunsaturated fatty acid (PUFA) enriched diets, including a novel renewable plant source of ω-3 fatty acids (Buglossoides arvensis), on the development and progression of rheumatoid arthritis (RA). METHODS: RA was induced in mice consuming experimental diets using the K/BxN model. The experimental diets consisted of either a western control diet (control), diets containing B. arvensis oil or fish oil. The effects of the diets on platelets, platelet microvesicles (PMVs), and inflammatory markers such as clinical index, ankle thickness and cytokine/chemokine release were measured. RESULTS: While ω-3 PUFA-enriched diets did not prevent the development of arthritis in the K/BxN model, a significant decrease in ankle swelling was observed compared to the control group. Platelets isolated from mice consuming either low content of B. arvensis oil or fish oil diets exhibited significantly decreased PMVs production compared to mice consuming the control diet. CONCLUSION: Our study provides insight into the contribution of ω-3 PUFA supplementation in modulating the pro-inflammatory phenotype of platelets in RA pathology. Furthermore, our study suggests that low concentrations of dietary B. arvensis oil may have similar anti-inflammatory potential seen with dietary fish oil supplementation.

8.
J Agromedicine ; 29(3): 432-450, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38651537

ABSTRACT

OBJECTIVES: Farmworkers in Michigan face precarious and exploitative labor conditions that affect their access to affordable, fair, and quality housing, which are key social determinants of health. We sought to assess the health, working conditions, and housing access, affordability, and quality of farmworkers living in and outside of employer-provided housing during the COVID-19 pandemic. METHODS: We conducted a mixed methods cross-sectional study in collaboration with community partners from the Michigan Farmworker Project and the Michigan Department of Civil Rights. We assessed housing, labor conditions, and general health through in-depth phone interviews with seasonal, migrant, and H-2A farmworkers (n = 63) during the height of the COVID-19 pandemic (2020-2021) in Michigan. Descriptive analyses of these data included comparisons by type of farmworker and type of housing (employer-provided or other). RESULTS: The majority of farmworkers interviewed were women and seasonal farmworkers and spoke primarily Spanish. A significant share of farmworker participants reported living in poverty (38.3%) and had low or very low food security (27.0%). Nearly half of farmworkers (47.6%) rated their health as "fair" or "poor" during the year prior to the interview, and more than a third reported 3 or more chronic conditions (39.6%) and lack of health insurance coverage (38.7%). Among the 43 workers tested, 25.6% reported testing positive for COVID-19. Farmworkers reported experiences of objectification and dehumanization. Three-quarters of workers reported feeling that they were treated as less than human by supervisors and one-third reported verbal abuse. Farmworkers also experienced challenges exacerbated by their social vulnerability that impeded them from finding affordable, quality housing. Regarding housing quality, the majority of workers (80.6%) reported one or more environmental hazards around their residence, and about a third reported not having air conditioning (33.%) and lacking a functioning washing machine (33.9%). Concerns about the quality of drinking water accessible to workers and exposure to chemicals were shared by participants. CONCLUSION: This study adds valuable knowledge to the understanding of the systemic barriers to housing and work conditions for female and male seasonal, migrant, and H-2A farmworkers in Michigan. Shortcomings in the regulatory and policy environment result in precarious housing and work conditions, including exploitative labor practices. These conditions negate equality, fairness, and health equity, important tenants for public health.


Subject(s)
COVID-19 , Farmers , Housing , Transients and Migrants , Humans , COVID-19/epidemiology , Michigan , Female , Male , Farmers/statistics & numerical data , Farmers/psychology , Cross-Sectional Studies , Adult , Transients and Migrants/statistics & numerical data , Middle Aged , Poverty , SARS-CoV-2 , Young Adult , Pandemics
9.
Cells ; 13(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38607079

ABSTRACT

Tight junctions are a barrier-forming cell-cell adhesion complex and have been proposed to regulate cell proliferation. However, the underlying mechanisms are not well understood. Here, we used cells deficient in the junction scaffold ZO-1 alone or together with its paralog ZO-2, which disrupts the junctional barrier. We found that ZO-1 knockout increased cell proliferation, induced loss of cell density-dependent proliferation control, and promoted apoptosis and necrosis. These phenotypes were enhanced by double ZO-1/ZO-2 knockout. Increased proliferation was dependent on two transcriptional regulators: YAP and ZONAB. ZO-1 knockout stimulated YAP nuclear translocation and activity without changes in Hippo-dependent phosphorylation. Knockout promoted TANK-binding kinase 1 (TBK1) activation and increased expression of the RhoA activator GEF-H1. Knockdown of ZO-3, another paralog interacting with ZO1, was sufficient to induce GEF-H1 expression and YAP activity. GEF-H1, TBK1, and mechanotransduction at focal adhesions were found to cooperate to activate YAP/TEAD in ZO-1-deficient cells. Thus, ZO-1 controled cell proliferation and Hippo-independent YAP activity by activating a GEF-H1- and TBK1-regulated mechanosensitive signalling network.


Subject(s)
Mechanotransduction, Cellular , Signal Transduction , Cell Proliferation , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Phosphorylation , Animals , Madin Darby Canine Kidney Cells , Dogs
10.
bioRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38559057

ABSTRACT

Clostridioides difficile, the leading cause of antibiotic-associated diarrhea, relies primarily on 3-3 crosslinks created by L,D-transpeptidases (LDTs) to fortify its peptidoglycan (PG) cell wall. This is unusual, as in most bacteria the vast majority of PG crosslinks are 4-3 crosslinks, which are created by penicillin-binding proteins (PBPs). Here we report the unprecedented observation that 3-3 crosslinking is essential for viability in C. difficile. We also report the discovery of a new family of LDTs that use a VanW domain to catalyze 3-3 crosslinking rather than a YkuD domain as in all previously known LDTs. Bioinformatic analyses indicate VanW domain LDTs are less common than YkuD domain LDTs and are largely restricted to Gram-positive bacteria. Our findings suggest that LDTs might be exploited as targets for antibiotics that kill C. difficile without disrupting the intestinal microbiota that is important for keeping C. difficile in check.

11.
Elife ; 132024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639995

ABSTRACT

Mechanisms by which Mycobacterium tuberculosis (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan side-chains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails. To alleviate this masking ability and to potentially improve efficacy of the BCG vaccine, we used CRISPRi to inhibit expression of the essential enzyme pair, MurT-GatD, implicated in amidation of peptidoglycan side-chains. We demonstrate that depletion of these enzymes results in reduced growth, cell wall defects, increased susceptibility to antibiotics, altered spatial localization of new peptidoglycan and increased NOD-1 expression in macrophages. In cell culture experiments, training of a human monocyte cell line with this recombinant BCG yielded improved control of Mtb growth. In the murine model of TB infection, we demonstrate that depletion of MurT-GatD in BCG, which is expected to unmask the D-glutamate diaminopimelate (iE-DAP) NOD-1 ligand, yields superior prevention of TB disease compared to the standard BCG vaccine. In vitro and in vivo experiments in this study demonstrate the feasibility of gene regulation platforms such as CRISPRi to alter antigen presentation in BCG in a bespoke manner that tunes immunity towards more effective protection against TB disease.


Tuberculosis is the leading cause of death from an infectious disease worldwide, partially due to a lack of access to drug treatments in certain countries where the disease is common. The only available tuberculosis vaccine ­ known as the BCG vaccine ­ is useful for preventing cases in young children, but is ineffective in teenagers and adults. So, there is a need to develop new vaccines that offer better, and longer lasting, durable protection in people of all ages. During an infection, our immune system recognizes markers known as PAMPs on the surface of bacteria, viruses or other disease-causing pathogens. The recognition of PAMPs by the immune system enables the body to distinguish foreign invading organisms from its own cells and tissues, thus triggering a response that fights the infection. If the body encounters the infectious agent again in the future, the immune system is able to quickly recognize and eliminate it before it can cause disease. Vaccines protect us by mimicking the appearance of the pathogen to trigger the first immune response without causing the illness. The BCG vaccine contains live bacteria that are closely related to the bacterium responsible for tuberculosis called Mycobacterium tuberculosis. Both M. tuberculosis and the live bacteria used in the BCG vaccine are able to hide an important PAMP, known as the NOD-1 ligand, from the immune system, making it harder for the body to detect them. The NOD-1 ligand forms part of the bacterial cell wall and modifying the BCG bacterium so it cannot disguise this PAMP may lead to a new, more effective vaccine. To investigate this possibility, Shaku et al. used a gene editing approach to develop a modified version of the BCG bacterium which is unable to hide its NOD-1 ligand when treated with a specific drug. Immune cells trained with the modified BCG vaccine were more effective at controlling the growth of M. tuberculosis than macrophages trained using the original vaccine. Furthermore, mice vaccinated with the modified BCG vaccine were better able to limit M. tuberculosis growth in their lungs than mice that had received the original vaccine. These findings offer a new candidate vaccine in the fight against tuberculosis. Further studies will be needed to modify the vaccine for use in humans. More broadly, this work demonstrates that gene editing can be used to expose a specific PAMP present in a live vaccine. This may help develop more effective vaccines for other diseases in the future.


Subject(s)
BCG Vaccine , Mycobacterium tuberculosis , Peptidoglycan , Tuberculosis , Animals , Peptidoglycan/metabolism , Mice , BCG Vaccine/immunology , Mycobacterium tuberculosis/immunology , Tuberculosis/prevention & control , Tuberculosis/immunology , Tuberculosis/microbiology , Humans , Mice, Inbred C57BL , Macrophages/immunology , Macrophages/microbiology , Macrophages/metabolism , Female , Nod1 Signaling Adaptor Protein/metabolism , Nod1 Signaling Adaptor Protein/genetics , Disease Models, Animal , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
12.
J Immunother Cancer ; 12(4)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38642938

ABSTRACT

BACKGROUND: Colitis caused by checkpoint inhibitors (CPI) is frequent and is treated with empiric steroids, but CPI colitis mechanisms in steroid-experienced or refractory disease are unclear. METHODS: Using colon biopsies and blood from predominantly steroid-experienced CPI colitis patients, we performed multiplexed single-cell transcriptomics and proteomics to nominate contributing populations. RESULTS: CPI colitis biopsies showed enrichment of CD4+resident memory (RM) T cells in addition to CD8+ RM and cytotoxic CD8+ T cells. Matching T cell receptor (TCR) clonotypes suggested that both RMs are progenitors that yield cytotoxic effectors. Activated, CD38+ HLA-DR+ CD4+ RM and cytotoxic CD8+ T cells were enriched in steroid-experienced and a validation data set of steroid-naïve CPI colitis, underscoring their pathogenic potential across steroid exposure. Distinct from ulcerative colitis, CPI colitis exhibited perturbed stromal metabolism (NAD+, tryptophan) impacting epithelial survival and inflammation. Endothelial cells in CPI colitis after anti-TNF and anti-cytotoxic T-lymphocyte-associated antigen 4 (anti-CTLA-4) upregulated the integrin α4ß7 ligand molecular vascular addressin cell adhesion molecule 1 (MAdCAM-1), which may preferentially respond to vedolizumab (anti-α4ß7). CONCLUSIONS: These findings nominate CD4+ RM and MAdCAM-1+ endothelial cells for targeting in specific subsets of CPI colitis patients.


Subject(s)
CD8-Positive T-Lymphocytes , Colitis , Humans , Endothelial Cells , Tumor Necrosis Factor Inhibitors , Colitis/chemically induced , Colitis/drug therapy , CD4-Positive T-Lymphocytes , Steroids/pharmacology , Steroids/therapeutic use , Stromal Cells
13.
Elife ; 122024 Apr 02.
Article in English | MEDLINE | ID: mdl-38562050

ABSTRACT

In the unpredictable Anthropocene, a particularly pressing open question is how certain species invade urban environments. Sex-biased dispersal and learning arguably influence movement ecology, but their joint influence remains unexplored empirically, and might vary by space and time. We assayed reinforcement learning in wild-caught, temporarily captive core-, middle-, or edge-range great-tailed grackles-a bird species undergoing urban-tracking rapid range expansion, led by dispersing males. We show, across populations, both sexes initially perform similarly when learning stimulus-reward pairings, but, when reward contingencies reverse, male-versus female-grackles finish 'relearning' faster, making fewer choice-option switches. How do male grackles do this? Bayesian cognitive modelling revealed male grackles' choice behaviour is governed more strongly by the 'weight' of relative differences in recent foraging payoffs-i.e., they show more pronounced risk-sensitive learning. Confirming this mechanism, agent-based forward simulations of reinforcement learning-where we simulate 'birds' based on empirical estimates of our grackles' reinforcement learning-replicate our sex-difference behavioural data. Finally, evolutionary modelling revealed natural selection should favour risk-sensitive learning in hypothesised urban-like environments: stable but stochastic settings. Together, these results imply risk-sensitive learning is a winning strategy for urban-invasion leaders, underscoring the potential for life history and cognition to shape invasion success in human-modified environments.


Subject(s)
Learning , Passeriformes , Animals , Humans , Female , Male , Bayes Theorem , Cognition , Reinforcement, Psychology
14.
Ecancermedicalscience ; 18: 1685, 2024.
Article in English | MEDLINE | ID: mdl-38566759

ABSTRACT

Introduction: The incidence of squamous carcinoma of the oropharynx (OPSCC) has presented an increase worldwide, a fact that occurs along with a phenomenon of epidemiological transition, whose pathogenesis is linked to human papilloma virus (HPV) in a significant part of the cases. Published evidence at the Latin American level is scarce. The present study aims to evaluate the epidemiological and clinical characteristics of patients with oropharyngeal cancer treated in a public oncology reference centre in Chile. Methodology: A cross-sectional study was carried out. Patients with histological confirmation of OPSCC aged 18 years or older, referred to the National Cancer Institute of Chile between 2012 and 2023 were included. The association with HPV was determined by immunohistochemistry for p16. Results: 178 patients were analysed, most of them in locoregionally advanced stages involving the palatine tonsil. Seventy-seven percent were male, with a median age of 60 years. Sixty-seven percent of patients were positive for p16, with a progressive increase to 85% in the last 2 years of the study. The p16(+) patients were younger and had fewer classical risk factors. Primary treatment was radiotherapy in 94% of patients. Conclusion: The epidemiological profile of patients with OPSCC treated in a Chilean public oncology referral centre reflects the epidemiological transition observed in developed countries. This change justifies the need to adapt health policies and conduct research that considers the characteristics of this new epidemiological profile.

15.
bioRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38496519

ABSTRACT

Background: Transforming growth factor beta (TGFß) is well-recognized as an immunosuppressive player in the tumor microenvironment but also has a significant impact on cancer cell phenotypes. Loss of TGFß signaling impairs DNA repair competency, which is described by a transcriptomic score, ßAlt. Cancers with high ßAlt have more genomic damage and are more responsive to genotoxic therapy. The growing appreciation that cancer DNA repair deficits are important determinants of immune response prompted us to investigate the association of ßAlt with response to immune checkpoint blockade (ICB). We predicted that high ßAlt tumors would be infiltrated with lymphocytes because of DNA damage burden and hence responsive to ICB. Methods: We analyzed public transcriptomic data from clinical trials and preclinical models using transcriptomic signatures of TGFß targets, DNA repair genes, tumor educated immune cells and interferon. A high ßAlt, immune poor mammary tumor derived transplant model resistant to programmed death ligand 1 (PD-L1) antibodies was studied using multispectral flow cytometry to interrogate the immune system. Results: Metastatic bladder patients in IMvigor 210 who responded to ICB had significantly increased ßAlt scores and experienced significantly longer overall survival compared to those with low ßAlt scores (hazard ratio 0.62, P=0.011) . Unexpectedly, 75% of high ßAlt cancers were immune poor as defined by low expression of tumor educated immune cell and interferon signatures. The association of high ßAlt with immune poor cancer was also evident in TCGA and preclinical cancer models. We used a high ßAlt, immune poor cancer to test therapeutic strategies to overcome its inherent anti-PD-L1 resistance. Combination treatment with radiation and TGFß inhibition were necessary for lymphocytic infiltration and activated NK cells were required for ICB response. Bioinformatic analysis identified high ßAlt, immune poor B16 and CT26 preclinical models and paired biopsies of cancer patients that also demonstrated NK cell activation upon response to ICB. Conclusions: Our studies support ßAlt as a biomarker that predicts response to ICB albeit in immune poor cancers, which has implications for the development of therapeutic strategies to increase the number of cancer patients who will benefit from immunotherapy.

16.
PLoS Genet ; 20(3): e1011003, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38547054

ABSTRACT

The popularity of the ancient, probiotic-rich beverage Kombucha Tea (KT) has surged in part due to its purported health benefits, which include protection against metabolic diseases; however, these claims have not been rigorously tested and the mechanisms underlying host response to the probiotics in KT are unknown. Here, we establish a reproducible method to maintain C. elegans on a diet exclusively consisting of Kombucha Tea-associated microbes (KTM), which mirrors the microbial community found in the fermenting culture. KT microbes robustly colonize the gut of KTM-fed animals and confer normal development and fecundity. Intriguingly, animals consuming KTMs display a marked reduction in total lipid stores and lipid droplet size. We find that the reduced fat accumulation phenotype is not due to impaired nutrient absorption, but rather it is sustained by a programed metabolic response in the intestine of the host. KTM consumption triggers widespread transcriptional changes within core lipid metabolism pathways, including upregulation of a suite of lysosomal lipase genes that are induced during lipophagy. The elevated lysosomal lipase activity, coupled with a decrease in lipid droplet biogenesis, is partially required for the reduction in host lipid content. We propose that KTM consumption stimulates a fasting-like response in the C. elegans intestine by rewiring transcriptional programs to promote lipid utilization. Our results provide mechanistic insight into how the probiotics in Kombucha Tea reshape host metabolism and how this popular beverage may impact human metabolism.


Subject(s)
Kombucha Tea , Animals , Humans , Caenorhabditis elegans/genetics , Lipase , Metabolic Networks and Pathways , Lipids , Fermentation
18.
Nat Commun ; 15(1): 1493, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374043

ABSTRACT

Ulcerative colitis (UC) is driven by immune and stromal subsets, culminating in epithelial injury. Vedolizumab (VDZ) is an anti-integrin antibody that is effective for treating UC. VDZ is known to inhibit lymphocyte trafficking to the intestine, but its broader effects on other cell subsets are less defined. To identify the inflammatory cells that contribute to colitis and are affected by VDZ, we perform single-cell transcriptomic and proteomic analyses of peripheral blood and colonic biopsies in healthy controls and patients with UC on VDZ or other therapies. Here we show that VDZ treatment is associated with alterations in circulating and tissue mononuclear phagocyte (MNP) subsets, along with modest shifts in lymphocytes. Spatial multi-omics of formalin-fixed biopsies demonstrates trends towards increased abundance and proximity of MNP and fibroblast subsets in active colitis. Spatial transcriptomics of archived specimens pre-treatment identifies epithelial-, MNP-, and fibroblast-enriched genes related to VDZ responsiveness, highlighting important roles for these subsets in UC.


Subject(s)
Colitis, Ulcerative , Humans , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Integrins/genetics , Multiomics , Proteomics , Gastrointestinal Agents/therapeutic use , Treatment Outcome , Retrospective Studies
19.
J Forensic Sci ; 69(3): 847-855, 2024 May.
Article in English | MEDLINE | ID: mdl-38362839

ABSTRACT

The detection of explosives and explosive devices based on the volatile compounds they emit is a long-standing tool for law enforcement and physical security. Toward that end, solid-phase microextraction (SPME) combined with gas chromatography-mass spectrometry (GC-MS) has become a crucial analytical tool for the identification of volatiles emitted by explosives. Previous SPME studies have identified many volatile compounds emitted by common explosive formulations that serve as the main charge in explosive devices. However, limited research has been conducted on initiators like fuses, detonating cords, and boosters. In this study, a variety of SPME fiber coatings (i.e., polydimethylsiloxane (PDMS), polydimethylsiloxane/divinylbenzene (PDMS/DVB), divinylbenzene/carboxin/polydimethylsiloxane (DVB/CAR/PDMS), and carboxin/polydimethylsiloxane (CAR/PDMS)) were employed for the extraction and analysis of volatiles from Composition C-4 (cyclohexanone, 2-ethyl-1-hexanol, and 2,3-dimethyl-2,3-dinitrobutane (DMNB)) and Red Dot double-base smokeless powder (nitroglycerine, phenylamine). The results revealed that a PDMS/DVB fiber was optimal. Then, an assortment of explosive items (i.e., detonation cord, safety fuse, slip-on booster, and shape charge) were analyzed with a PDMS/DVB fiber. A variety of volatile compounds were identified, including plasticizers (tributyl acetyl citrate, N-butylbenzenesulfonamide), taggants (DMNB), and degradation products (2-ethyl-1-hexanol).

20.
Conserv Physiol ; 12(1): coae004, 2024.
Article in English | MEDLINE | ID: mdl-38343722

ABSTRACT

Upper thermal limits in many fish species are limited, in part, by the heart's ability to meet increased oxygen demand during high temperatures. Cardiac plasticity induced by developmental temperatures can therefore influence thermal tolerance. Here, we determined how incubation temperatures during the embryonic stage influence cardiac performance across temperatures during the sensitive larval stage of the imperiled longfin smelt. We transposed a cardiac assay for larger fish to newly hatched larvae that were incubated at 9°C, 12°C or 15°C. We measured heart rate over increases in temperature to identify the Arrhenius breakpoint temperature (TAB), a proxy for thermal optimum and two upper thermal limit metrics: temperature when heart rate is maximized (Tpeak) and when cardiac arrhythmia occurs (TArr). Higher incubation temperatures increased TAB, Tpeak and TArr, but high individual variation in all three metrics resulted in great overlap of individuals at TAB, Tpeak and TArr across temperatures. We found that the temperatures at which 10% of individuals reached Tpeak or TArr and temperatures at which number of individuals at TAB relative to Tpeak (ΔN(TAB,Tpeak)) was maximal, correlated more closely with upper thermal limits and thermal optima inferred from previous studies, compared to the mean values of the three cardiac metrics of the present study. Higher incubation temperatures increased the 10% Tpeak and TArr thresholds but maximum ΔN(TAB,Tpeak) largely remained the same, suggesting that incubation temperatures modulate upper thermal limits but not Topt for a group of larvae. Overall, by measuring cardiac performance across temperatures, we defined upper thermal limits (10% thresholds; Tpeak, 14.4-17.5°C; TArr, 16.9-20.2°C) and optima (ΔN(TAB,Tpeak), 12.4-14.4°C) that can guide conservation strategies for longfin smelt and demonstrated the potential of this cardiac assay for informing conservation plans for the early life stages of fish.

SELECTION OF CITATIONS
SEARCH DETAIL
...