Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Nat Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956197

ABSTRACT

Clinical whole-genome sequencing (WGS) has been shown to deliver potential benefits to children with cancer and to alter treatment in high-risk patient groups. It remains unknown whether offering WGS to every child with suspected cancer can change patient management. We collected WGS variant calls and clinical and diagnostic information from 281 children (282 tumors) across two English units (n = 152 from a hematology center, n = 130 from a solid tumor center) where WGS had become a routine test. Our key finding was that variants uniquely attributable to WGS changed the management in ~7% (20 out of 282) of cases while providing additional disease-relevant findings, beyond standard-of-care molecular tests, in 108 instances for 83 (29%) cases. Furthermore, WGS faithfully reproduced every standard-of-care molecular test (n = 738) and revealed several previously unknown genomic features of childhood tumors. We show that WGS can be delivered as part of routine clinical care to children with suspected cancer and can change clinical management by delivering unexpected genomic insights. Our experience portrays WGS as a clinically impactful assay for routine practice, providing opportunities for assay consolidation and for delivery of molecularly informed patient care.

2.
Front Neurosci ; 18: 1379658, 2024.
Article in English | MEDLINE | ID: mdl-38803685

ABSTRACT

Glioblastoma multiforme (GBM) is one of the most common and lethal forms of brain cancer, carrying a very poor prognosis (median survival of ~15 months post-diagnosis). Treatment typically involves invasive surgical resection of the tumour mass, followed by radiotherapy and adjuvant chemotherapy using the alkylating agent temozolomide, but over half of patients do not respond to this drug and considerable resistance is observed. Tumour heterogeneity is the main cause of therapeutic failure, where diverse progenitor glioblastoma stem cell (GSC) lineages in the microenvironment drive tumour recurrence and therapeutic resistance. The apelin receptor is a class A GPCR that binds two endogenous peptide ligands, apelin and ELA, and plays a role in the proliferation and survival of cancer cells. Here, we used quantitative whole slide immunofluorescent imaging of human GBM samples to characterise expression of the apelin receptor and both its ligands in the distinct GSC lineages, namely neural-progenitor-like cells (NPCs), oligodendrocyte-progenitor-like cells (OPCs), and mesenchymal-like cells (MES), as well as reactive astrocytic cells. The data confirm the presence of the apelin receptor as a tractable drug target that is common across the key cell populations driving tumour growth and maintenance, offering a potential novel therapeutic approach for patients with GBM.

3.
Nature ; 628(8008): 612-619, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509366

ABSTRACT

There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.


Subject(s)
Dura Mater , Immunity, Humoral , Lymphoid Tissue , Veins , Administration, Intranasal , Antigens/administration & dosage , Antigens/immunology , Bone Marrow/immunology , Central Nervous System/blood supply , Central Nervous System/immunology , Dura Mater/blood supply , Dura Mater/immunology , Germinal Center/cytology , Germinal Center/immunology , Lymphatic Vessels/immunology , Lymphoid Tissue/blood supply , Lymphoid Tissue/immunology , Plasma Cells/immunology , Skull/blood supply , T-Lymphocytes/immunology , Veins/physiology , Humans , Male , Female , Adult , Middle Aged , Animals , Mice , Aged, 80 and over
4.
Parkinsonism Relat Disord ; 116: 105866, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37804622

ABSTRACT

INTRODUCTION: Many studies of the Richardson's syndrome phenotype of progressive supranuclear palsy (PSP) have elucidated regions of progressive atrophy and neural correlates of clinical severity. However, the neural correlates of survival and how these differ according to variant phenotypes are poorly understood. We set out to identify structural changes that predict severity and survival from scanning date to death. METHODS: Structural magnetic resonance imaging data from 112 deceased people with clinically defined 'probable' or 'possible' PSP were analysed. Neuroanatomical regions of interest volumes, thickness and area were correlated with 'temporal stage', defined as the ratio of time from symptom onset to death, time from scan to death ('survival from scan'), and in a subset of patients, clinical severity, adjusting for age and total intracranial volume. Forty-nine participants had post mortem confirmation of the diagnosis. RESULTS: Using T1-weighted magnetic resonance imaging, we confirmed the midbrain, and bilateral cortical structural correlates of contemporary disease severity. Atrophy of the striatum, cerebellum and frontotemporal cortex correlate with temporal stage and survival from scan, even after adjusting for severity. Subcortical structure-survival relationships were stronger in Richardson's syndrome than variant phenotypes. CONCLUSIONS: Although the duration of PSP varies widely between people, an individual's progress from disease onset to death (their temporal stage) reflects atrophy in striatal, cerebellar and frontotemporal cortical regions. Our findings suggest magnetic resonance imaging may contribute to prognostication and stratification of patients with heterogenous clinical trajectories and clarify the processes that confer mortality risk in PSP.


Subject(s)
Supranuclear Palsy, Progressive , Humans , Supranuclear Palsy, Progressive/diagnosis , Magnetic Resonance Imaging/methods , Mesencephalon/pathology , Cerebellum/pathology , Atrophy/pathology
6.
Sci Rep ; 13(1): 16239, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37758804

ABSTRACT

Multiple Sclerosis (MS) is an autoimmune demyelinating disease characterised by changes in iron and myelin content. These biomarkers are detectable by Quantitative Susceptibility Mapping (QSM), an advanced Magnetic Resonance Imaging technique detecting magnetic properties. When analysed with radiomic techniques that exploit its intrinsic quantitative nature, QSM may furnish biomarkers to facilitate early diagnosis of MS and timely assessment of progression. In this work, we explore the robustness of QSM radiomic features by varying the number of grey levels (GLs) and echo times (TEs), in a sample of healthy controls and patients with MS. We analysed the white matter in total and within six clinically relevant tracts, including the cortico-spinal tract and the optic radiation. After optimising the number of GLs (n = 64), at least 65% of features were robust for each Volume of Interest (VOI), with no difference (p > .05) between left and right hemispheres. Different outcomes in feature robustness among the VOIs depend on their characteristics, such as volume and variance of susceptibility values. This study validated the processing pipeline for robustness analysis and established the reliability of QSM-based radiomics features against GLs and TEs. Our results provide important insights for future radiomics studies using QSM in clinical applications.


Subject(s)
Autoimmune Diseases , Multiple Sclerosis , Humans , Multiple Sclerosis/diagnostic imaging , Reproducibility of Results , Patients , Magnetic Resonance Imaging
7.
Brain ; 146(8): 3232-3242, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36975168

ABSTRACT

The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based end point selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), multiple system atrophy (MSA) and related disorders, to compare candidate clinical trial end points. In this multicentre UK study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and MRI assessments at baseline, 6 and 12 months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, PSP-subcortical (PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (PSP-frontal, PSP-speech and language and PSP-CBS subtypes), MSA-parkinsonism, MSA-cerebellar, CBS with and without evidence of Alzheimer's disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling and sample sizes for clinical trials of disease-modifying agents, according to group and assessment type. Two hundred forty-three people were recruited [117 PSP, 68 CBS, 42 MSA and 16 indeterminate; 138 (56.8%) male; age at recruitment 68.7 ± 8.61 years]. One hundred and fifty-nine completed the 6-month assessment (82 PSP, 27 CBS, 40 MSA and 10 indeterminate) and 153 completed the 12-month assessment (80 PSP, 29 CBS, 35 MSA and nine indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N < 100 required for 1-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease-specific. In conclusion, phenotypic variance within PSP, CBS and MSA is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial end points, from potential functional, cognitive, clinical or neuroimaging measures of disease progression.


Subject(s)
Multiple System Atrophy , Parkinsonian Disorders , Supranuclear Palsy, Progressive , Male , Humans , Middle Aged , Aged , Female , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/drug therapy , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/pathology , Multiple System Atrophy/diagnostic imaging , Multiple System Atrophy/pathology , Magnetic Resonance Imaging , United Kingdom
9.
J Neurosurg Case Lessons ; 3(8)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-36130548

ABSTRACT

BACKGROUND: Resorbable hemostatic agents left behind postoperatively occasionally result in granulomatous space-occupying lesions known as "gossypibomas." The authors report a case of an intracranial gossypiboma, which is exceedingly rare and frequently radiologically indistinguishable from other lesions. OBSERVATIONS: A 35-year-old woman presented with a generalized tonic-clonic seizure and subsequent left-sided hemiparesis. Magnetic resonance imaging showed an enhancing lobulated lesion subjacent to a right frontal burr hole, surrounded by vasogenic edema with mass effect and midline shift. Nine years earlier, she had had a triple bolt inserted to monitor intracranial pressure after sustaining a traumatic brain injury. Surgicel was used to control bleeding during insertion. Colocation of the lesion with the position of triple bolt 9 years earlier raised suspicion for gossypiboma. However, the minor nature of the surgery and the length of time since surgery to presentation placed this case well outside the range of cases reported in the literature. The lesion was resected en bloc with no recurrence 18 months later. Histological examination revealed the presence of foreign material. However, given its minute size, confirming its nature was not possible. Lessons: The authors show that gossypibomas can occur following a relatively minor procedure and remain clinically and radiologically silent for much longer than previously reported.

10.
Autops Case Rep ; 12: e2021391, 2022.
Article in English | MEDLINE | ID: mdl-35919869

ABSTRACT

Childhood primary angiitis of the CNS (cPACNS) is a poorly understood, rare, and diagnostically challenging neurologic disease. We describe an unusual and autopsy-confirmed case of cPACNS presenting as vertebrobasilar circulation hemorrhagic strokes in a 4-year-old girl. The presentation and clinical features were inconsistent with primary CNS vasculitis and skewed the diagnosis. Autopsy and histopathological analyses revealed a progressive lymphocytic vasculitis affecting the medium to large vessels of vertebrobasilar circulation and sparing the anterior circulation. It is imperative to raise the index of suspicion for cPACNS in any case of unusual or unexplained neurological presentation, especially in the absence of cerebrovascular risk factors and/or coagulation disorders.

11.
Sci Rep ; 12(1): 11873, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831377

ABSTRACT

Degenerative cervical myelopathy (DCM) is a common progressive disease of the spinal cord which can cause tetraplegia. Despite its prevalence, few studies have investigated the pathophysiology of DCM. Macroautophagy is a cellular process which degrades intracellular contents and its disruption is thought to contribute to many neurodegenerative diseases. The present study tests the hypothesis that macroautophagy is impaired in DCM. To address this, we utilised a collection of post-mortem cervical spinal cord samples and investigated seven DCM cases and five human controls. Immunohistochemical staining was used to visualise proteins involved in autophagy. This demonstrated significantly reduced numbers of LC3 puncta in cases versus controls (p = 0.0424). Consistent with reduced autophagy, we identified large aggregates of p62 in four of seven cases and no controls. Tau was increased in two of five cases compared to controls. BCL-2 was significantly increased in cases versus controls (p = 0.0133) and may explain this reduction in autophagy. Increased BCL-2 (p = 0.0369) and p62 bodies (p = 0.055) were seen in more severe cases of DCM. This is the first evidence that autophagy is impaired in DCM; the impairment appears greater in more severe cases. Further research is necessary to investigate whether macroautophagy has potential as a therapeutic target in DCM.


Subject(s)
Macroautophagy , Spinal Cord Diseases , Cervical Vertebrae , Humans , Proto-Oncogene Proteins c-bcl-2
12.
Radiol Imaging Cancer ; 4(4): e210076, 2022 07.
Article in English | MEDLINE | ID: mdl-35838532

ABSTRACT

Purpose To evaluate glioblastoma (GBM) metabolism by using hyperpolarized carbon 13 (13C) MRI to monitor the exchange of the hyperpolarized 13C label between injected [1-13C]pyruvate and tumor lactate and bicarbonate. Materials and Methods In this prospective study, seven treatment-naive patients (age [mean ± SD], 60 years ± 11; five men) with GBM were imaged at 3 T by using a dual-tuned 13C-hydrogen 1 head coil. Hyperpolarized [1-13C]pyruvate was injected, and signal was acquired by using a dynamic MRI spiral sequence. Metabolism was assessed within the tumor, in the normal-appearing brain parenchyma (NABP), and in healthy volunteers by using paired or unpaired t tests and a Wilcoxon signed rank test. The Spearman ρ correlation coefficient was used to correlate metabolite labeling with lactate dehydrogenase A (LDH-A) expression and some immunohistochemical markers. The Benjamini-Hochberg procedure was used to correct for multiple comparisons. Results The bicarbonate-to-pyruvate (BP) ratio was lower in the tumor than in the contralateral NABP (P < .01). The tumor lactate-to-pyruvate (LP) ratio was not different from that in the NABP (P = .38). The LP and BP ratios in the NABP were higher than those observed previously in healthy volunteers (P < .05). Tumor lactate and bicarbonate signal intensities were strongly correlated with the pyruvate signal intensity (ρ = 0.92, P < .001, and ρ = 0.66, P < .001, respectively), and the LP ratio was weakly correlated with LDH-A expression in biopsy samples (ρ = 0.43, P = .04). Conclusion Hyperpolarized 13C MRI demonstrated variation in lactate labeling in GBM, both within and between tumors. In contrast, bicarbonate labeling was consistently lower in tumors than in the surrounding NABP. Keywords: Hyperpolarized 13C MRI, Glioblastoma, Metabolism, Cancer, MRI, Neuro-oncology Supplemental material is available for this article. Published under a CC BY 4.0 license.


Subject(s)
Glioblastoma , Bicarbonates , Glioblastoma/diagnostic imaging , Humans , Lactate Dehydrogenase 5 , Lactic Acid , Male , Middle Aged , Prospective Studies , Pyruvic Acid/metabolism
13.
BMJ Case Rep ; 15(4)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35459644

ABSTRACT

A man in his 60s presented with a worsening headache, confusion and expressive dysphasia which, on admission, progressed to a falling Glasgow Coma Score and seizures. He was subsequently admitted to the intensive care unit. The clinical diagnosis was antibody-negative autoimmune encephalitis. Despite immunotherapy, the patient died 5 months after initial presentation and postmortem examination revealed he had CD8 encephalitis. This case demonstrates that CD8 encephalitis can present similarly to autoimmune encephalitis both clinically and on imaging. A brain biopsy would have revealed the diagnosis in life, although this would not have altered his treatment.


Subject(s)
Encephalitis , HIV Infections , HIV-1 , Hashimoto Disease , CD8-Positive T-Lymphocytes , Encephalitis/diagnosis , Encephalitis/drug therapy , Hashimoto Disease/diagnosis , Humans , Male
14.
Acta Neuropathol ; 143(6): 687-695, 2022 06.
Article in English | MEDLINE | ID: mdl-35488929

ABSTRACT

Frontotemporal lobar degeneration (FTLD) is a common cause of young onset dementia and is characterised by focal neuropathology. The reasons for the regional neuronal vulnerability are not known. Mitochondrial mechanisms have been implicated in the pathogenesis of FTLD, raising the possibility that frontotemporal regional mutations of mitochondrial DNA (mtDNA) are contributory causes. Here we applied dual sequencing of the entire mtDNA at high depth to identify high-fidelity single nucleotide variants (mtSNVs) and mtDNA rearrangements in post mortem brain tissue of people affected by FTLD and age-matched controls. Both mtSNVs and mtDNA rearrangements were elevated in the temporal lobe, with the greatest burden seen in FTLD. mtSNVs found in multiple brain regions also reached a higher heteroplasmy levels in the temporal lobe. The temporal lobe of people with FTLD had a higher burden of ribosomal gene variants predicted to affect intra-mitochondrial protein synthesis, and a higher proportion of missense variants in genes coding for respiratory chain subunits. In conclusion, heteroplasmic mtDNA variants predicted to affect oxidative phosphorylation are enriched in FTLD temporal lobe, and thus may contribute to the regional vulnerability in pathogenesis.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , DNA, Mitochondrial/genetics , Frontotemporal Lobar Degeneration/pathology , Heteroplasmy , Humans , Mutation/genetics
15.
Br J Cancer ; 127(1): 137-144, 2022 07.
Article in English | MEDLINE | ID: mdl-35449451

ABSTRACT

BACKGROUND: Whole-genome sequencing (WGS) of cancers is becoming an accepted component of oncological care, and NHS England is currently rolling out WGS for all children with cancer. This approach was piloted during the 100,000 genomes (100 K) project. Here we share the experience of the East of England Genomic Medicine Centre (East-GMC), reporting the feasibility and clinical utility of centralised WGS for individual children locally. METHODS: Non-consecutive children with solid tumours were recruited into the pilot 100 K project at our Genomic Medicine Centre. Variant catalogues were returned for local scrutiny and appraisal at dedicated genomic tumour advisory boards with an emphasis on a detailed exploration of potential clinical value. RESULTS: Thirty-six children, representing one-sixth of the national 100 K cohort, were recruited through our Genomic Medicine Centre. The diagnoses encompassed 23 different solid tumour types and WGS provided clinical utility, beyond standard-of-care assays, by refining (2/36) or changing (4/36) diagnoses, providing prognostic information (8/36), defining pathogenic germline mutations (1/36) or revealing novel therapeutic opportunities (8/36). CONCLUSION: Our findings demonstrate the feasibility and clinical value of centralised WGS for children with cancer. WGS offered additional clinical value, especially in diagnostic terms. However, our experience highlights the need for local expertise in scrutinising and clinically interpreting centrally derived variant calls for individual children.


Subject(s)
Neoplasms , State Medicine , Child , Feasibility Studies , Germ-Line Mutation , Humans , Neoplasms/genetics , Whole Genome Sequencing
16.
iScience ; 25(3): 103971, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35224470

ABSTRACT

Clotting Factor V (FV) is primarily synthesized in the liver and when cleaved by thrombin forms pro-coagulant Factor Va (FVa). Using whole blood RNAseq and scRNAseq of peripheral blood mononuclear cells, we find that FV mRNA is expressed in leukocytes, and identify neutrophils, monocytes, and T regulatory cells as sources of increased FV in hospitalized patients with COVID-19. Proteomic analysis confirms increased FV in circulating neutrophils in severe COVID-19, and immunofluorescence microscopy identifies FV in lung-infiltrating leukocytes in COVID-19 lung disease. Increased leukocyte FV expression in severe disease correlates with T-cell lymphopenia. Both plasma-derived and a cleavage resistant recombinant FV, but not thrombin cleaved FVa, suppress T-cell proliferation in vitro. Anticoagulants that reduce FV conversion to FVa, including heparin, may have the unintended consequence of suppressing the adaptive immune system.

17.
J Pathol ; 257(2): 198-217, 2022 06.
Article in English | MEDLINE | ID: mdl-35107828

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, typically manifests as a respiratory illness, although extrapulmonary involvement, such as in the gastrointestinal tract and nervous system, as well as frequent thrombotic events, are increasingly recognised. How this maps onto SARS-CoV-2 organ tropism at the histological level, however, remains unclear. Here, we perform a comprehensive validation of a monoclonal antibody against the SARS-CoV-2 nucleocapsid protein (NP) followed by systematic multisystem organ immunohistochemistry analysis of the viral cellular tropism in tissue from 36 patients, 16 postmortem cases and 16 biopsies with polymerase chain reaction (PCR)-confirmed SARS-CoV-2 status from the peaks of the pandemic in 2020 and four pre-COVID postmortem controls. SARS-CoV-2 anti-NP staining in the postmortem cases revealed broad multiorgan involvement of the respiratory, digestive, haematopoietic, genitourinary and nervous systems, with a typical pattern of staining characterised by punctate paranuclear and apical cytoplasmic labelling. The average time from symptom onset to time of death was shorter in positively versus negatively stained postmortem cases (mean = 10.3 days versus mean = 20.3 days, p = 0.0416, with no cases showing definitive staining if the interval exceeded 15 days). One striking finding was the widespread presence of SARS-CoV-2 NP in neurons of the myenteric plexus, a site of high ACE2 expression, the entry receptor for SARS-CoV-2, and one of the earliest affected cells in Parkinson's disease. In the bone marrow, we observed viral SARS-CoV-2 NP within megakaryocytes, key cells in platelet production and thrombus formation. In 15 tracheal biopsies performed in patients requiring ventilation, there was a near complete concordance between immunohistochemistry and PCR swab results. Going forward, our findings have relevance to correlating clinical symptoms with the organ tropism of SARS-CoV-2 in contemporary cases as well as providing insights into potential long-term complications of COVID-19. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Megakaryocytes , Myenteric Plexus , Neurons
18.
J Nucl Med ; 63(7): 1052-1057, 2022 07.
Article in English | MEDLINE | ID: mdl-34795013

ABSTRACT

Progressive supranuclear palsy (PSP) is a neurodegenerative disorder characterized by neuroglial tau pathology. A new staging system for PSP pathology postmortem has been described and validated. We used a data-driven approach to test whether postmortem pathologic staging in PSP can be reproduced in vivo with 18F-flortaucipir PET. Methods: Forty-two patients with probable PSP and 39 controls underwent 18F-flortaucipir PET. Conditional inference tree analyses on regional binding potential values identified absent/present pathology thresholds to define in vivo staging. Following the postmortem staging approach for PSP pathology, we evaluated the combinations of absent/present pathology (or abnormal/normal PET signal) across all regions to assign each participant to in vivo stages. ANOVA was applied to analyze differences among means of disease severity between stages. In vivo staging was compared with postmortem staging in 9 patients who also had postmortem confirmation of the diagnosis and stage. Results: Stage assignment was estimable in 41 patients: 10, 26, and 5 patients were classified in stage I/II, stage III/IV, and stage V/VI, respectively, whereas 1 patient was not classifiable. Explorative substaging identified 2 patients in stage I, 8 in stage II, 9 in stage III, 17 in stage IV, and 5 in stage V. However, the nominal 18F-flortaucipir--derived stage was not associated with clinical severity and was not indicative of pathology staging postmortem. Conclusion:18F-flortaucipir PET in vivo does not correspond to neuropathologic staging in PSP. This analytic approach, seeking to mirror in vivo neuropathology staging with PET-to-autopsy correlational analyses, might enable in vivo staging with next-generation tau PET tracers; however, further evidence and comparisons with postmortem data are needed.


Subject(s)
Supranuclear Palsy, Progressive , Carbolines , Humans , Positron-Emission Tomography , Supranuclear Palsy, Progressive/complications , Supranuclear Palsy, Progressive/diagnostic imaging , Supranuclear Palsy, Progressive/pathology , tau Proteins/metabolism
19.
Autops. Case Rep ; 12: e2021391, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1383895

ABSTRACT

ABSTRACT Childhood primary angiitis of the CNS (cPACNS) is a poorly understood, rare, and diagnostically challenging neurologic disease. We describe an unusual and autopsy-confirmed case of cPACNS presenting as vertebrobasilar circulation hemorrhagic strokes in a 4-year-old girl. The presentation and clinical features were inconsistent with primary CNS vasculitis and skewed the diagnosis. Autopsy and histopathological analyses revealed a progressive lymphocytic vasculitis affecting the medium to large vessels of vertebrobasilar circulation and sparing the anterior circulation. It is imperative to raise the index of suspicion for cPACNS in any case of unusual or unexplained neurological presentation, especially in the absence of cerebrovascular risk factors and/or coagulation disorders.

20.
Sci Adv ; 7(44): eabh1448, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34714685

ABSTRACT

Both the replication of protein aggregates and their spreading throughout the brain are implicated in the progression of Alzheimer's disease (AD). However, the rates of these processes are unknown and the identity of the rate-determining process in humans has therefore remained elusive. By bringing together chemical kinetics with measurements of tau seeds and aggregates across brain regions, we can quantify their replication rate in human brains. Notably, we obtain comparable rates in several different datasets, with five different methods of tau quantification, from postmortem seed amplification assays to tau PET studies in living individuals. Our results suggest that from Braak stage III onward, local replication, rather than spreading between brain regions, is the main process controlling the overall rate of accumulation of tau in neocortical regions. The number of seeds doubles only every ∼5 years. Thus, limiting local replication likely constitutes the most promising strategy to control tau accumulation during AD.

SELECTION OF CITATIONS
SEARCH DETAIL
...