Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 46(7): 6885-6902, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39057053

ABSTRACT

Pereskia sacharosa Griseb. is a plant used in traditional herbal medicine to treat inflammation. We analyzed the phenolic content of P. sacharosa leaves (EEPs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and investigated the anti-inflammatory properties of EEPs and its flavonoid fraction (F10) in animal models subjected to acute neuroinflammation induced by bacterial lipopolysaccharide (LPS). Coronal brain sections of C57BL/6JN male mice or Wistar male rats administered with EEPs or F10 before LPS were subjected to in situ hybridization to determine c-fos and CD14 mRNA levels in the hypothalamus or GABAA γ2 mRNA levels in the hippocampus. Theta oscillations were recorded every 6 h in the hippocampus of Wistar rats. In total, five flavonoids and eight phenolic acids were identified and quantified in P. sacharosa leaves. Either EEPs or F10 crossed the blood-brain barrier (BBB) into the brain and reduced the mRNA expression of c-fos, CD14, and GABAA γ2. A decrease in theta oscillation was observed in the hippocampus of the LPS group, while the F10 + LPS group overrode the LPS effect on theta activity. We conclude that the bioactive compounds of P. sacharosa reduce the central response to inflammation, allowing the early return of ambulatory activity and well-being of the animal.

2.
J Physiol Sci ; 72(1): 17, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35896962

ABSTRACT

The external globus pallidus (GP) is a GABAergic node involved in motor control regulation and coordinates firing and synchronization in the basal ganglia-thalamic-cortical network through inputs and electrical activity. In Parkinson's disease, high GABA levels alter electrical activity in the GP and contribute to motor symptoms. Under normal conditions, GABA levels are regulated by GABA transporters (GATs). GAT type 1 (GAT-1) is highly expressed in the GP, and pharmacological blockade of GAT-1 increases the duration of currents mediated by GABA A receptors and induces tonic inhibition. The functional contribution of the pathway between the GP and the reticular thalamic nucleus (RTn) is unknown. This pathway is important since the RTn controls the flow of information between the thalamus and cortex, suggesting that it contributes to cortical dynamics. In this work, we investigated the effect of increased GABA levels on electrical activity in the RTn by obtaining single-unit extracellular recordings from anesthetized rats and on the motor cortex (MCx) by corticography. Our results show that high GABA levels increase the spontaneous activity rate of RTn neurons and desynchronize oscillations in the beta frequency band in the MCx. Our findings provide evidence that the GP exerts tonic control over RTn activity through the GP-reticular pathway and functionally contributes to cortical oscillation dynamics.


Subject(s)
Globus Pallidus , Thalamic Nuclei , Animals , Basal Ganglia , Globus Pallidus/physiology , Neurons/metabolism , Rats , Thalamic Nuclei/metabolism , gamma-Aminobutyric Acid/metabolism
3.
Brain Stimul ; 12(6): 1429-1438, 2019.
Article in English | MEDLINE | ID: mdl-31378602

ABSTRACT

BACKGROUND: Variation in the temporal patterns of electrical pulses in stimulation trains has opened a new field of opportunity for the treatment of neurological disorders, such as pharmacoresistant temporal lobe epilepsy. Whether this novel type of stimulation affects epileptogenesis remains to be investigated. OBJECTIVE: The purpose of this study was to analyze the effects of temporally irregular deep brain stimulation on kindling-induced epileptogenesis in rats. METHODS: Temporally irregular deep brain stimulation was delivered at different times with respect to the kindling stimulation. Behavioral and electrographic changes on kindling acquisition were compared with a control group and a temporally regular deep brain stimulation-treated group. The propagation of epileptiform activity was analyzed with wavelet cross-correlation analysis, and interictal epileptiform discharge ratios were obtained. RESULTS: Temporally irregular deep brain stimulation delivered in the epileptogenic focus during the interictal period shortened the daily afterdischarge duration, slowed the progression of seizure stages, diminished the generalized seizure duration and interfered with the propagation of epileptiform activity from the seizure onset zone to the ipsi- and contralateral motor cortex. We also found a negative correlation between seizure severity and interictal epileptiform discharges in rats stimulated with temporally irregular deep brain stimulation. CONCLUSION: These results provide evidence that temporally irregular deep brain stimulation interferes with the establishment of epilepsy by delaying epileptogenesis by almost twice as long in kindling animals. Thus, temporally irregular deep brain stimulation could be a preventive approach against epilepsy.


Subject(s)
Deep Brain Stimulation/methods , Disease Models, Animal , Epilepsy/therapy , Kindling, Neurologic/physiology , Animals , Electric Stimulation/methods , Epilepsy/physiopathology , Male , Rats , Rats, Wistar , Seizures/physiopathology , Seizures/therapy , Time Factors
4.
Neuromodulation ; 22(4): 425-434, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30742344

ABSTRACT

RATIONALE: The use of electrical stimulation therapy to treat epilepsy is currently being studied in experimental animals and patients. Our study was designed to evaluate the effects of electrical stimulation applied in the thalamic reticular nucleus (TRN) on the development of pentylentetrazole-induced seizures. MATERIALS AND METHODS: Experiments were performed using male Wistar rats with electrodes stereotaxically implanted in the left TRN. Epidural EEG recording screws were implanted in the motor cortex for EEG recording. The rats were classified in seven groups: one sham group, four groups receiving either high- or low-frequency preemptive stimulation for either 10 or 60 minutes, and two groups receiving either high- or low-frequency responsive stimulation for ten minutes. All animals received a single dose of pentylentetrazole throughout five days. EEG recordings were obtained from the cortex and were evaluated to assess ictal behavior more than 45 to 90 minutes. RESULTS: Ten minutes of preemptive high-frequency stimulation in the TRN induced a significant decrease in seizure severity compared to 60 minutes of preemptive stimulation and ten minutes of responsive stimulation. Additionally, ten minutes of preemptive high-frequency stimulation protected against death as aftereffect of status epilepticus. The spike-wave complex frequency was not modified. CONCLUSIONS: These data could contribute to the characterization of the TRN in mediating the initiation and spreading of seizure activity and provide preclinical support for optimal parameters to use to obtain beneficial effects against convulsive activity.


Subject(s)
Deep Brain Stimulation/methods , Pentylenetetrazole/toxicity , Seizures/chemically induced , Seizures/therapy , Thalamic Nuclei , Animals , Male , Random Allocation , Rats , Rats, Wistar , Seizures/physiopathology , Thalamic Nuclei/physiopathology , Treatment Outcome
5.
Behav Brain Res ; 205(1): 45-9, 2009 Dec 14.
Article in English | MEDLINE | ID: mdl-19573563

ABSTRACT

The vagus nerve participates in the control and regulation of important autonomous functions, emotional tasks, and neural activity. Electrical vagus nerve stimulation (VNS) is an approved procedure for the treatment of refractory epilepsy in humans. VNS has also been shown to improve mood complaints and cognitive function in both human patients and animals. Thus, the purpose of this study was to analyse and describe the effects of VNS on the development and establishment of sensory habituation and electrographic activity of the visual pathway in freely moving cats. Six cats had implants placed in the optic chiasm (OC), lateral geniculate body (LGB), mesencephalic reticular formation (MRF), primary visual cortex (VC) of the left hemisphere, and left vagus nerve. Immediately after surgery, all cats presented anisocoria and relaxation of the left nictitant membrane. Also showed vegetative-type responses such as myosis, licking, and swallowing during VNS. Animals were then subjected to repeated luminous stimuli at intervals of 1 and 3s to cause habituation. The effect of VNS on the frequency and latency of the habituation episodes and the electrographic changes in the registered brain structures were analysed. Latency analysis showed that VNS delayed the first habituation episode. VNS had transitory effects on the neural activity of the primary visual pathway structures, which caused a small but measurable delay in the establishment of habituation. In conclusion, VNS interferes with the development and establishment of visual habituation, an elementary form of non-associative learning, in freely moving cats.


Subject(s)
Habituation, Psychophysiologic/physiology , Vagus Nerve Stimulation , Vagus Nerve/physiology , Visual Pathways/physiology , Visual Perception/physiology , Alpha Rhythm , Animals , Cats , Electrodes, Implanted , Electroencephalography , Geniculate Bodies/physiology , Male , Optic Chiasm/physiology , Photic Stimulation , Reticular Formation/physiology , Time Factors , Visual Cortex/physiology
SELECTION OF CITATIONS
SEARCH DETAIL