Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Artif Intell ; 6: 1084001, 2023.
Article in English | MEDLINE | ID: mdl-37056913

ABSTRACT

Parkinson's Disease (PD) is the second most common age-related neurological disorder that leads to a range of motor and cognitive symptoms. A PD diagnosis is difficult since its symptoms are quite similar to those of other disorders, such as normal aging and essential tremor. When people reach 50, visible symptoms such as difficulties walking and communicating begin to emerge. Even though there is no cure for PD, certain medications can relieve some of the symptoms. Patients can maintain their lifestyles by controlling the complications caused by the disease. At this point, it is essential to detect this disease and prevent it from progressing. The diagnosis of the disease has been the subject of much research. In our project, we aim to detect PD using different types of Machine Learning (ML), and Deep Learning (DL) models such as Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), K-Nearest Neighbor (KNN), and Multi-Layer Perceptron (MLP) to differentiate between healthy and PD patients by voice signal features. The dataset taken from the University of California at Irvine (UCI) machine learning repository consisted of 195 voice recordings of examinations carried out on 31 patients. Moreover, our models were trained using different techniques such as Synthetic Minority Over-sampling Technique (SMOTE), Feature Selection, and hyperparameter tuning (GridSearchCV) to enhance their performance. At the end, we found that MLP and SVM with a ratio of 70:30 train/test split using GridSearchCV with SMOTE gave the best results for our project. MLP performed with an overall accuracy of 98.31%, an overall recall of 98%, an overall precision of 100%, and f1-score of 99%. In addition, SVM performed with an overall accuracy of 95%, an overall recall of 96%, an overall precision of 98%, and f1-score of 97%. The experimental results of this research imply that the proposed method can be used to reliably predict PD and can be easily incorporated into healthcare for diagnosis purposes.

2.
Front Aging Neurosci ; 14: 879453, 2022.
Article in English | MEDLINE | ID: mdl-35370626

ABSTRACT

[This corrects the article DOI: 10.3389/fnagi.2020.603179.].

3.
Front Aging Neurosci ; 12: 603179, 2020.
Article in English | MEDLINE | ID: mdl-33343337

ABSTRACT

Introduction: The goal of this study was to investigate and compare the classification performance of machine learning with behavioral data from standard neuropsychological tests, a cognitive task, or both. Methods: A neuropsychological battery and a simple 5-min cognitive task were administered to eight individuals with mild cognitive impairment (MCI), eight individuals with mild Alzheimer's disease (AD), and 41 demographically match controls (CN). A fully connected multilayer perceptron (MLP) network and four supervised traditional machine learning algorithms were used. Results: Traditional machine learning algorithms achieved similar classification performances with neuropsychological or cognitive data. MLP outperformed traditional algorithms with the cognitive data (either alone or together with neuropsychological data), but not neuropsychological data. In particularly, MLP with a combination of summarized scores from neuropsychological tests and the cognitive task achieved ~90% sensitivity and ~90% specificity. Applying the models to an independent dataset, in which the participants were demographically different from the ones in the main dataset, a high specificity was maintained (100%), but the sensitivity was dropped to 66.67%. Discussion: Deep learning with data from specific cognitive task(s) holds promise for assisting in the early diagnosis of Alzheimer's disease, but future work with a large and diverse sample is necessary to validate and to improve this approach.

SELECTION OF CITATIONS
SEARCH DETAIL