Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 15(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36233878

ABSTRACT

Fly oil shale ash (FOSA) is a waste material known for its pozzolanic activity. This study intends to investigate the optimum thermal treatment conditions to use FOSA efficiently as a cement replacement material. FOSA samples were burned in an electric oven for 2, 4, and 6 h at temperatures ranging from 550 °C to 1000 °C with 150 °C intervals. A total of 333 specimens out of 37 different mixes were prepared and tested with cement replacement ratios between 10% and 30%. The investigated properties included the mineralogical characteristics, chemical elemental analysis, compressive strength, and strength activity index for mortar samples. The findings show that the content of SiO2 + Al2O3 + Fe2O3 was less than 70% in all samples. The strength activity index of the raw FOSA at 56 days exceeded 75%. Among all specimens, the calcined samples for 2 h demonstrated the highest pozzolanic activity and compressive strength with a 75% strength activity index. The model developed by RSM is suitable for the interpretation of FOSA in the cementitious matrix with high degrees of correlation above 85%. The optimal compressive strength was achieved at a 30% replacement level, a temperature of 700 °C for 2 h, and after 56 days of curing.

2.
Ultrason Sonochem ; 51: 90-102, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30514489

ABSTRACT

Hydrodeoxygenation is one of the promising technologies for the transformation of triglycerides into long-chain hydrocarbon fuel commonly known as green diesel. The hydrodeoxygenation (HDO) of rubber seed oil into diesel range (C15-C18) hydrocarbon over non-sulphided bimetallic (Ni-Mo/γ-Al2O3 solid catalysts were studied. The catalysts were synthesized via wet impregnation method as well as sonochemical method. The synthesized catalysts were subjected to characterization methods including FESEM coupled with EDX, XRD, BET, TEM, XPS, NH3-TPD, CO-chemisorption and H2-TPR in order to investigate the effects of ultrasound irradiations on physicochemical properties of the catalyst. All the catalysts were tested for HDO reaction at 350 °C, 35 bar, H2/oil 1000 N (cm3/cm3) and WHSV = 1 h-1 in fixed bed tubular reactor. The catalyst prepared via sonochemical method showed comparatively higher specific surface area, particles in nano-size and uniform distribution of particle on the external surface of the support, higher crystallinity and lower reduction temperature as well as higher concentration of Mo4+ deoxygenating metal species. These physicochemical properties improved the catalytic activity compared to conventionally synthesized catalyst for HDO of rubber seed oil. The catalytic performance of sonochemically synthesized Ni-Mo/γ-Al2O3 catalyst (80.87%) was higher than the catalyst prepared via wet impregnation method (63.3%). The sonochemically synthesized Ni-Mo/γ-Al2O3 catalyst is found to be active, produces 80.87 wt% of diesel range hydrocarbons, and it gives high selectivity for Pentadecane (18.7 wt%), Hexadecane (16.65 wt%), Heptadecane (24.45 wt%) and Octadecane (21.0 wt%). The product distribution revealed that the deoxygenation reaction pathway was preferred. Higher conversion and higher HDO yield in this study are associated mainly with the change in concentration ratio between oxidation states of molybdenum (Mo4+, Mo5+, and Mo6+) on the external surface of the catalyst due to ultrasound irradiation during the synthesis process. Consequently, the application of sonochemically synthesized non-sulphided catalysts favored mainly hydrodeoxygenation of diesel range hydrocarbon.

3.
PLoS One ; 13(2): e0193518, 2018.
Article in English | MEDLINE | ID: mdl-29489897

ABSTRACT

Recently, nano-EOR has emerged as a new frontier for improved and enhanced oil recovery (IOR & EOR). Despite their benefits, the nanoparticles tend to agglomerate at reservoir conditions which cause their detachment from the oil/water interface, and are consequently retained rather than transported through a porous medium. Dielectric nanoparticles including ZnO have been proposed to be a good replacement for EOR due to their high melting point and thermal properties. But more importantly, these particles can be polarized under electromagnetic (EM) irradiation, which provides an innovative smart Nano-EOR process denoted as EM-Assisted Nano-EOR. In this study, parameters involved in the oil recovery mechanism under EM waves, such as reducing mobility ratio, lowering interfacial tensions (IFT) and altering wettability were investigated. Two-phase displacement experiments were performed in sandpacks under the water-wet condition at 95°C, with permeability in the range of 265-300 mD. A crude oil from Tapis oil field was employed; while ZnO nanofluids of two different particle sizes (55.7 and 117.1 nm) were prepared using 0.1 wt. % nanoparticles that dispersed into brine (3 wt. % NaCl) along with SDBS as a dispersant. In each flooding scheme, three injection sequential scenarios have been conducted: (i) brine flooding as a secondary process, (ii) surfactant/nano/EM-assisted nano flooding, and (iii) second brine flooding to flush nanoparticles. Compare with surfactant flooding (2% original oil in place/OOIP) as tertiary recovery, nano flooding almost reaches 8.5-10.2% of OOIP. On the other hand, EM-assisted nano flooding provides an incremental oil recovery of approximately 9-10.4% of OOIP. By evaluating the contact angle and interfacial tension, it was established that the degree of IFT reduction plays a governing role in the oil displacement mechanism via nano-EOR, compare to mobility ratio. These results reveal a promising way to employ water-based ZnO nanofluid for enhanced oil recovery purposes at a relatively high reservoir temperature.


Subject(s)
Electromagnetic Fields , Environmental Restoration and Remediation/methods , Nanoparticles/chemistry , Petroleum , Zinc Oxide/chemistry
4.
Chemosphere ; 195: 21-28, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29248749

ABSTRACT

Over the past decades, Ionic liquids (ILs) have gained considerable attention from the scientific community in reason of their versatility and performance in many fields. However, they nowadays remain mainly for laboratory scale use. The main barrier hampering their use in a larger scale is their questionable ecological toxicity. This study investigated the effect of hydrophobic and hydrophilic cyclic cation-based ILs against four pathogenic bacteria that infect humans. For that, cations, either of aromatic character (imidazolium or pyridinium) or of non-aromatic nature, (pyrrolidinium or piperidinium), were selected with different alkyl chain lengths and combined with both hydrophilic and hydrophobic anionic moieties. The results clearly demonstrated that introducing of hydrophobic anion namely bis((trifluoromethyl)sulfonyl)amide, [NTF2] and the elongation of the cations substitutions dramatically affect ILs toxicity behaviour. The established toxicity data [50% effective concentration (EC50)] along with similar endpoint collected from previous work against Aeromonas hydrophila were combined to developed quantitative structure-activity relationship (QSAR) model for toxicity prediction. The model was developed and validated in the light of Organization for Economic Co-operation and Development (OECD) guidelines strategy, producing good correlation coefficient R2 of 0.904 and small mean square error (MSE) of 0.095. The reliability of the QSAR model was further determined using k-fold cross validation.


Subject(s)
Anti-Infective Agents/chemistry , Bacteria/drug effects , Ionic Liquids/pharmacology , Quantitative Structure-Activity Relationship , Anions , Cations/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Ionic Liquids/chemistry , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL