Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosciences (Riyadh) ; 29(2): 128-132, 2024 May.
Article in English | MEDLINE | ID: mdl-38740394

ABSTRACT

OBJECTIVES: To determine the effectiveness and safety of Hemopatch® as a primary dural sealant in preventing CSF leakage following cranial surgery. Cerebrospinal fluid (CSF) leaks occur in cranial operations and are associated with significant patient burden and expense. The use of Hemopatch® as a dural sealant in cranial neurosurgical procedures is described and analyzed in this study. METHODS: Data were retrospectively collected from all patients who underwent a craniotomy for various neurosurgical indications where Hemopatch® was used as the primary dural sealant between June 2017 and June 2022. Infection and CSF leak were the main indicators evaluated after surgery. RESULTS: A total of 119 consecutive patients met our inclusion criteria. The median was age 41.5 years, and 52.5% were female. The mean follow-up period was 2.3 years (7 months to 6 years). There were 110 (92.44%) supratentorial and 9 (7.56%) infratentorial craniotomies. Postoperative CSF leak was reported in 2 patients (1.68%), one in each cohort. Postoperative infection occurred in one patient (0.84%). CONCLUSION: The results suggest that using Hemopatch® as a dural sealant in cranial surgery is effective and safe. After supra-/infratentorial craniotomies, the rate of postoperative adverse events in our sample was within the range of known surgical revision rates. Future randomized clinical studies are required to confirm our encouraging findings.


Subject(s)
Cerebrospinal Fluid Leak , Neurosurgical Procedures , Humans , Female , Male , Retrospective Studies , Cerebrospinal Fluid Leak/prevention & control , Cerebrospinal Fluid Leak/etiology , Cerebrospinal Fluid Leak/epidemiology , Adult , Middle Aged , Neurosurgical Procedures/methods , Neurosurgical Procedures/adverse effects , Craniotomy/methods , Craniotomy/adverse effects , Postoperative Complications/epidemiology , Postoperative Complications/prevention & control , Dura Mater/surgery , Aged , Young Adult , Adolescent , Tissue Adhesives/therapeutic use
2.
Clin Neurophysiol ; 128(11): 2300-2308, 2017 11.
Article in English | MEDLINE | ID: mdl-29035822

ABSTRACT

OBJECTIVE: To determine optimal interstimulus interval (ISI) and pulse duration (D) for direct cortical stimulation (DCS) motor evoked potentials (MEPs) based on rheobase and chronaxie derived with two techniques. METHODS: In 20 patients under propofol/remifentanil anesthesia, 5-pulse DCS thenar MEP rheobase and chronaxie with 2, 3, 4 and 5ms ISI were measured by linear regression of five charge thresholds at 0.05, 0.1, 0.2, 0.5 and 1msD, and estimated from two charge thresholds at 0.1 and 1msD using simple arithmetic. Optimal parameters were defined by minimum threshold energy: the ISI with lowest rheobase2×chronaxie, and D at its chronaxie. Near-optimal was defined as threshold energy <25% above minimum. RESULTS: The optimal ISI was 3 or 4 (n=7 each), 2 (n=4), or 5ms (n=2), but only 4ms was always either optimal or near-optimal. The optimal D was ∼0.2 (n=12), ∼0.1 (n=7) or ∼0.3ms (n=1). Two-point estimates closely approximated five-point measurements. CONCLUSIONS: Optimal ISI/D varies, with 4ms/0.2ms being most consistently optimal or near-optimal. Two-point estimation is sufficiently accurate. SIGNIFICANCE: The results endorse 4ms ISI and 0.2msD for general use. Two-point estimation could enable quick individual optimization.


Subject(s)
Chronaxy/physiology , Electric Stimulation/methods , Evoked Potentials, Motor/physiology , Monitoring, Intraoperative/methods , Adolescent , Adult , Child , Female , Humans , Male , Middle Aged , Time Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL