Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oncol Res ; 32(7): 1231-1237, 2024.
Article in English | MEDLINE | ID: mdl-38948023

ABSTRACT

Background: Despite the availability of chemotherapy drugs such as 5-fluorouracil (5-FU), the treatment of some cancers such as gastric cancer remains challenging due to drug resistance and side effects. This study aimed to investigate the effect of celastrol in combination with the chemotherapy drug 5-FU on proliferation and induction of apoptosis in human gastric cancer cell lines (AGS and EPG85-257). Materials and Methods: In this in vitro study, AGS and EPG85-257 cells were treated with different concentrations of celastrol, 5-FU, and their combination. Cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The synergistic effect of 5-FU and celastrol was studied using Compusyn software. The DNA content at different phases of the cell cycle and apoptosis rate was measured using flow cytometry. Results: Co-treatment with low concentrations (10% inhibitory concentration (IC10)) of celastrol and 5-FU significantly reduced IC50 (p < 0.05) so that 48 h after treatment, IC50 was calculated at 3.77 and 6.9 µM for celastrol, 20.7 and 11.6 µM for 5-FU, and 5.03 and 4.57 µM for their combination for AGS and EPG85-257 cells, respectively. The mean percentage of apoptosis for AGS cells treated with celastrol, 5-FU, and their combination was obtained 23.9, 41.2, and 61.9, and for EPG85-257 cells 5.65, 46.9, and 55.7, respectively. In addition, the 5-FU and celastrol-5-FU combination induced cell cycle arrest in the synthesis phase. Conclusions: Although celastrol could decrease the concentration of 5-fluorouracil that sufficed to suppress gastric cancer cells, additional studies are required to arrive at conclusive evidence on the anticancer effects of celastrol.


Subject(s)
Apoptosis , Cell Proliferation , Drug Synergism , Fluorouracil , Pentacyclic Triterpenes , Stomach Neoplasms , Triterpenes , Humans , Pentacyclic Triterpenes/pharmacology , Fluorouracil/pharmacology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Triterpenes/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Cycle/drug effects
2.
Pak J Pharm Sci ; 37(2(Special)): 443-450, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822548

ABSTRACT

Gastric cancer remains a global health concern, driving the exploration of natural products with anticancer potential. This study investigated the antiproliferative activity and chemical composition of a 70% ethanolic extract from Melissa officinalis L. against human gastric cancer cells. The extract was prepared and evaluated for total phenolic content, antioxidant capacity and flavonoid content. The MTT test checked how well it stopped the growth of human gastric adenocarcinoma (AGS) and normal dermal fibroblast (HDF) cells. Data analysis (SPSS Statistics) determined viable cell percentages and performed regression analysis (p<0.05). The extract exhibited significant antiproliferative activity against AGS cells compared to normal cells (p<0.05), with decreasing IC50 values (564.3, 258.0 and 122.5 µg/ml) over 24, 48 and 72 hours. It also displayed antioxidant activity (IC50=16.8±1.41µg/ml) and contained substantial phenolics (225.76±4.1 mg GAE/g) and flavonoids (22.36±2.6 mg RUT/g). This study suggests the 70% ethanolic extract of M. officinalis effectively suppresses AGS cell growth and possesses promising antioxidant properties, highlighting its potential as a natural source of anticancer and antioxidant agents, deserving further investigation.


Subject(s)
Adenocarcinoma , Antineoplastic Agents, Phytogenic , Antioxidants , Cell Proliferation , Melissa , Phenols , Plant Extracts , Stomach Neoplasms , Humans , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Melissa/chemistry , Phenols/pharmacology , Phenols/analysis , Cell Line, Tumor , Antioxidants/pharmacology , Antioxidants/isolation & purification , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Proliferation/drug effects , Flavonoids/pharmacology , Flavonoids/analysis , Cell Survival/drug effects
3.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36355552

ABSTRACT

The present study aimed to prepare and evaluate a controlled-release system based on a chitosan scaffold containing selenium nanoparticles loaded with doxycycline. Its topical application in skin wound healing in rats was investigated. Therefore, 80 female rats were used and, after creating experimental skin defects on their back, were randomly divided into four equal groups: the control group without any therapeutic intervention; the second group received a chitosan transdermal patch (Ch); the third group received chitosan transdermal patch loaded with selenium nanoparticles (ChSeN), and the last group received chitosan transdermal patch containing selenium nanoparticle loaded by doxycycline (ChSeND). Morphological and structural characteristics of the synthesized patches were evaluated, and in addition to measuring the skin wound area on days 3, 7, and 21, a histopathological examination was performed. On the third day of the study, less hemorrhage and inflammation and more neo-vascularization were seen in the ChSeND group. Moreover, on day 7, less inflammation and collagen formation were recorded in the ChSeN and ChSeND groups than in the other groups. At the same time, more neo-vascularization and re-epithelialization were seen in the ChSeND group on days 7 and 21. In addition, on day 21 of the study, the most collagen formation was in this group. Examination of the wound area also showed that the lowest area belonged to the ChSeND group. The results showed that the simultaneous presence of selenium nanoparticles and doxycycline in the ChSeND group provided the best repair compared to the control, Ch and ChSeN groups.

SELECTION OF CITATIONS
SEARCH DETAIL