Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Exp Mol Med ; 56(3): 686-699, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38480902

ABSTRACT

Cancer cells often exhibit resistance to apoptotic cell death, but they may be vulnerable to other types of cell death. Elucidating additional mechanisms that govern cancer cell death is crucial for developing new therapies. Our research identified cyclic AMP-responsive element-binding protein 3 (CREB3) as a crucial regulator and initiator of a unique cell death mechanism known as karyoptosis. This process is characterized by nuclear shrinkage, deformation, and the loss of nuclear components following nuclear membrane rupture. We found that the N-terminal domain (aa 1-230) of full-length CREB3 (CREB3-FL), which is anchored to the nuclear inner membrane (INM), interacts with lamins and chromatin DNA. This interaction maintains a balance between the outward force exerted by tightly packed DNA and the inward constraining force, thereby preserving INM integrity. Under endoplasmic reticulum (ER) stress, aberrant cleavage of CREB3-FL at the INM leads to abnormal accumulation of the cleaved form of CREB3 (CREB3-CF). This accumulation disrupts the attachment of CREB3-FL to the INM, resulting in sudden rupture of the nuclear membrane and the onset of karyoptosis. Proteomic studies revealed that CREB3-CF overexpression induces a DNA damage response akin to that caused by UVB irradiation, which is associated with cellular senescence in cancer cells. These findings demonstrated that the dysregulation of CREB3-FL cleavage is a key factor in karyoptotic cell death. Consequently, these findings suggest new therapeutic strategies in cancer treatment that exploit the process of karyoptosis.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Nuclear Envelope , Proteomics , Apoptosis , DNA , Nuclear Envelope/metabolism , Humans , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein/metabolism
2.
Front Neurosci ; 17: 1268591, 2023.
Article in English | MEDLINE | ID: mdl-37916182

ABSTRACT

Everyday speech communication often occurs in environments with background noise, and the impact of noise on speech recognition can vary depending on factors such as noise type, noise intensity, and the listener's hearing ability. However, the extent to which neural mechanisms in speech understanding are influenced by different types and levels of noise remains unknown. This study aims to investigate whether individuals exhibit distinct neural responses and attention strategies depending on noise conditions. We recorded electroencephalography (EEG) data from 20 participants with normal hearing (13 males) and evaluated both neural tracking of speech envelopes and behavioral performance in speech understanding in the presence of varying types of background noise. Participants engaged in an EEG experiment consisting of two separate sessions. The first session involved listening to a 12-min story presented binaurally without any background noise. In the second session, speech understanding scores were measured using matrix sentences presented under speech-shaped noise (SSN) and Story noise background noise conditions at noise levels corresponding to sentence recognitions score (SRS). We observed differences in neural envelope correlation depending on noise type but not on its level. Interestingly, the impact of noise type on the variation in envelope tracking was more significant among participants with higher speech perception scores, while those with lower scores exhibited similarities in envelope correlation regardless of the noise condition. The findings suggest that even individuals with normal hearing could adopt different strategies to understand speech in challenging listening environments, depending on the type of noise.

3.
Cancer Res Commun ; 3(1): 80-96, 2023 01.
Article in English | MEDLINE | ID: mdl-36968220

ABSTRACT

Tumor-associated macrophages (TAM) are involved in tumor progression, metastasis, and immunosuppression. Because TAMs are highly plastic and could alter their phenotypes to proinflammatory M1 in response to environmental stimuli, reeducating TAMs has emerged as a promising approach to overcoming the challenges of solid cancer treatment. This study investigated the effect of IL9 on macrophage M1 polarization and verified its antitumor potential to retrain TAMs and promote chemokine secretion. We demonstrated that IL9 stimulated macrophage proliferation and polarized them toward the proinflammatory M1 phenotype in an IFNγ-dependent manner. Tumor-localized IL9 also polarized TAMs toward M1 in vivo and made them release CCL3/4 and CXCL9/10 to recruit antitumor immune cells, including T and natural killer cells, into the tumor microenvironment. Furthermore, peritoneal treatment with recombinant IL9 delayed the growth of macrophage-enriched B16F10 melanoma and 4T1 breast cancer in syngeneic mice, although IL9 treatment did not reduce tumor growth in the absence of macrophage enrichment. These results demonstrate the efficacy of IL9 in macrophage polarization to trigger antitumor immunity. Significance: These findings clarified the effect of IL9 on macrophage M1 polarization and verified its antitumor potential through retraining TAMs and chemokine secretion.


Subject(s)
Interleukin-9 , Melanoma , Mice , Animals , Interleukin-9/pharmacology , Macrophages , Melanoma/pathology , Macrophage Activation , Chemokines/pharmacology , Tumor Microenvironment
4.
Arch Pharm Res ; 46(1): 44-58, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36607545

ABSTRACT

E2F 1, 2, and 3a, (refer to as E2Fs) are a subfamily of E2F transcription factor family that play essential roles in cell-cycle progression, DNA replication, DNA repair, apoptosis, and differentiation. Although the transcriptional regulation of E2Fs has focused on pocket protein retinoblastoma protein complex, recent studies indicate that post-translational modification and stability regulation of E2Fs play key roles in diverse cellular processes. In this study, we found that FBXO1, a component of S-phase kinase-associated protein 1 (SKP1)-cullin 1-F-box protein (SCF) complex, is an E2Fs binding partner. Furthermore, FBXO1 to E2Fs binding induced K48 ubiquitination and subsequent proteasomal degradation of E2Fs. Binding domain analysis indicated that the Arg (R)/Ile (I) and R/Val (V) motifs, which are located in the dimerization domain of E2Fs, of E2F 1 and 3a and E2F2, respectively, acted as degron motifs (DMs) for FBXO1. Notably, RI/AA or RV/AA mutation in the DMs reduced FBXO1-mediated ubiquitination and prolonged the half-lives of E2Fs. Importantly, the stabilities of E2Fs were affected by phosphorylation of threonine residues located near RI and RV residues of DMs. Phosphorylation prediction database analysis and specific inhibitor analysis revealed that MEK/ERK signaling molecules play key roles in FBXO1/E2Fs' interaction and modulate E2F protein turnover. Moreover, both elevated E2Fs protein levels by knockdown of FBXO1 and decreased E2Fs protein levels by sh-E2F3a delayed G1/S cell cycle transition, resulting in inhibition of cancer cell proliferation. These results demonstrated that FBXO1-E2Fs axis-mediated precise E2Fs stability regulation plays a key role in cell proliferation via G1/S cell cycle transition.


Subject(s)
Mitogen-Activated Protein Kinase Kinases , Neoplasms , E2F Transcription Factors/metabolism , Cell Cycle , Cell Proliferation , Cell Cycle Proteins
5.
Front Neurol ; 13: 950718, 2022.
Article in English | MEDLINE | ID: mdl-36188373

ABSTRACT

Introduction: Continuous theta-burst stimulation (cTBS) has been used as an effective tool in inducing inhibitory aftereffect within a short time periods in the motor cortex; this has been demonstrated in the language network to a limited degree with controversial effect. In this study, we aimed to delineate the offline effect of cTBS-induced changes to the left posterior inferior frontal gyrus (pIFG) in healthy subjects using functional magnetic resonance imaging (fMRI). Methods: Twenty healthy, normal subjects (mean age: 30.84 years) were recruited. They all were right-handed and had no contra-indications for fMRI or cTBS. They were randomly assigned into the treatment group or the sham control group. Results: ANOVA showed that cTBS had a significant main effect only when the sham treatment was subtracted from the real stimulation in left superior temporal, left inferior frontal gyrus, thalamus, and right insular cortex (uncorrected p < 0.002). The subjects' post-cTBS condition differed significantly from their pre-cTBS condition in the left pIFG (uncorrected p < 0.002). There were interactions in the pIFG, bilateral superior parietal lobules, left superior temporal, left supramarginal, and left cuneus areas. The application of cTBS induced increased BOLD signals in language-related networks by stimulating the left pIFG (BA 44). This implies that inhibiting the pIFG led to increased use of language network resources. Conclusion: This study demonstrated cTBS-induced changes in the language network caused by stimulation of the left pIFG. Based on these findings, future studies on the therapeutic effects of cTBS on the right Broca's homolog area are warranted.

6.
Exp Mol Med ; 54(1): 35-46, 2022 01.
Article in English | MEDLINE | ID: mdl-35022544

ABSTRACT

Extracellular signal-regulated kinase 3 (ERK3) is an atypical member of the mitogen-activated protein kinase (MAPK) family, members of which play essential roles in diverse cellular processes during carcinogenesis, including cell proliferation, differentiation, migration, and invasion. Unlike other MAPKs, ERK3 is an unstable protein with a short half-life. Although deubiquitination of ERK3 has been suggested to regulate the activity, its ubiquitination has not been described in the literature. Here, we report that FBXW7 (F-box and WD repeat domain-containing 7) acts as a ubiquitination E3 ligase for ERK3. Mammalian two-hybrid assay and immunoprecipitation results demonstrated that ERK3 is a novel binding partner of FBXW7. Furthermore, complex formation between ERK3 and the S-phase kinase-associated protein 1 (SKP1)-cullin 1-F-box protein (SCF) E3 ligase resulted in the destabilization of ERK3 via a ubiquitination-mediated proteasomal degradation pathway, and FBXW7 depletion restored ERK3 protein levels by inhibiting this ubiquitination. The interaction between ERK3 and FBXW7 was driven by binding between the C34D of ERK3, especially at Thr417 and Thr421, and the WD40 domain of FBXW7. A double mutant of ERK3 (Thr417 and Thr421 to alanine) abrogated FBXW7-mediated ubiquitination. Importantly, ERK3 knockdown inhibited the proliferation of lung cancer cells by regulating the G1/S-phase transition of the cell cycle. These results show that FBXW7-mediated ERK3 destabilization suppresses lung cancer cell proliferation in vitro.


Subject(s)
Lung Neoplasms , Mitogen-Activated Protein Kinase 6 , Animals , Cell Proliferation , F-Box-WD Repeat-Containing Protein 7/genetics , F-Box-WD Repeat-Containing Protein 7/metabolism , Lung Neoplasms/genetics , Mammals/metabolism , Mitogen-Activated Protein Kinase 6/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
J Cancer Prev ; 26(3): 174-182, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34703820

ABSTRACT

F-box proteins, consisting of 69 members which are organized into the three subclasses FBXW, FBXL, and FBXO, are the substrate specific recognition subunits of the SKP1-Cullin 1-F-box protein E3 ligase complex. Although ßTrCP 1 and 2, members of the FBXW subfamily, are known to regulate some protein stability, molecular mechanisms by which these proteins can recognize proper substrates are unknown. In this study, it was found that ßTrCP1 showed strong interaction with members of mitogen-activated protein kinases. Although extracellular signal-regulated kinase (ERK) 3, p38ß, and p38δ showed weak interactions, ERK2 specifically interacted with ßTrCP1 as assessed by immunoprecipitation. In interaction domain determination experiments, we found that ERK2 interacted with two independent ERK docking sites located in the F-box domain and linker domain, but not the WD40 domain, of ßTrCP1. Notably, mutations of ßTrCP1 at the ERK docking sites abolished the interaction with ERK2. ßTrCP1 underwent phosphorylation by EGF stimulation, while the presence of the mitogen-activated protein kinase kinases inhibitor U0126, genetic silencing by sh-ERK2, and mutation of the ERK docking site of ßTrCP1 inhibited phosphorylation. This inhibition of ßTrCP1 phosphorylation resulted in a shortened half-life and low protein levels. These results suggest that ERK2-mediated ßTrCP1 phosphorylation may induce the destabilization of ßTrCP1.

8.
Front Neurosci ; 15: 610978, 2021.
Article in English | MEDLINE | ID: mdl-33790730

ABSTRACT

Learning of new auditory stimuli often requires repetitive exposure to the stimulus. Fast and implicit learning of sounds presented at random times enables efficient auditory perception. However, it is unclear how such sensory encoding is processed on a neural level. We investigated neural responses that are developed from a passive, repetitive exposure to a specific sound in the auditory cortex of anesthetized rats, using electrocorticography. We presented a series of random sequences that are generated afresh each time, except for a specific reference sequence that remains constant and re-appears at random times across trials. We compared induced activity amplitudes between reference and fresh sequences. Neural responses from both primary and non-primary auditory cortical regions showed significantly decreased induced activity amplitudes for reference sequences compared to fresh sequences, especially in the beta band. This is the first study showing that neural correlates of auditory pattern learning can be evoked even in anesthetized, passive listening animal models.

9.
Int J Mol Sci ; 22(4)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669811

ABSTRACT

Although the lignan compound fargesin is a major ingredient in Shin-Yi, the roles of fargesin in carcinogenesis and cancer cell growth have not been elucidated. In this study, we observed that fargesin inhibited cell proliferation and transformation by suppression of epidermal growth factor (EGF)-stimulated G1/S-phase cell cycle transition in premalignant JB6 Cl41 and HaCaT cells. Unexpectedly, we found that signaling pathway analyses showed different regulation patterns in which fargesin inhibited phosphatidylinositol 3-kinase/AKT signaling without an alteration of or increase in mitogen activated protein kinase (MAPK) in JB6 Cl41 and HaCaT cells, while both signaling pathways were abrogated by fargesin treatment in colon cancer cells. We further found that fargesin-induced colony growth inhibition of colon cancer cells was mediated by suppression of the cyclin dependent kinase 2 (CDK2)/cyclin E signaling axis by upregulation of p21WAF1/Cip1, resulting in G1-phase cell cycle accumulation in a dose-dependent manner. Simultaneously, the suppression of CDK2/cyclin E and induction of p21WAF1/Cip1 were correlated with Rb phosphorylation and c-Myc suppression. Taken together, we conclude that fargesin-mediated c-Myc suppression inhibits EGF-induced cell transformation and colon cancer cell colony growth by the suppression of retinoblastoma (Rb)-E2F and CDK/cyclin signaling pathways, which are mainly regulated by MAPK and PKB signaling pathways.


Subject(s)
Benzodioxoles/pharmacology , Cell Transformation, Neoplastic/pathology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cyclin E/metabolism , Cyclin-Dependent Kinase 2/metabolism , Epidermal Growth Factor/adverse effects , Lignans/pharmacology , Signal Transduction , Cell Death/drug effects , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Shape/drug effects , Cell Transformation, Neoplastic/drug effects , G1 Phase/drug effects , Humans , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Resting Phase, Cell Cycle/drug effects , Signal Transduction/drug effects
10.
Front Hum Neurosci ; 15: 613903, 2021.
Article in English | MEDLINE | ID: mdl-33597853

ABSTRACT

Mismatch negativity (MMN) is the electroencephalographic (EEG) waveform obtained by subtracting event-related potential (ERP) responses evoked by unexpected deviant stimuli from responses evoked by expected standard stimuli. While the MMN is thought to reflect an unexpected change in an ongoing, predictable stimulus, it is unknown whether MMN responses evoked by changes in different stimulus features have different magnitudes, latencies, and topographies. The present study aimed to investigate whether MMN responses differ depending on whether sudden stimulus change occur in pitch, duration, location or vowel identity, respectively. To calculate ERPs to standard and deviant stimuli, EEG signals were recorded in normal-hearing participants (N = 20; 13 males, 7 females) who listened to roving oddball sequences of artificial syllables. In the roving paradigm, any given stimulus is repeated several times to form a standard, and then suddenly replaced with a deviant stimulus which differs from the standard. Here, deviants differed from preceding standards along one of four features (pitch, duration, vowel or interaural level difference). The feature levels were individually chosen to match behavioral discrimination performance. We identified neural activity evoked by unexpected violations along all four acoustic dimensions. Evoked responses to deviant stimuli increased in amplitude relative to the responses to standard stimuli. A univariate (channel-by-channel) analysis yielded no significant differences between MMN responses following violations of different features. However, in a multivariate analysis (pooling information from multiple EEG channels), acoustic features could be decoded from the topography of mismatch responses, although at later latencies than those typical for MMN. These results support the notion that deviant feature detection may be subserved by a different process than general mismatch detection.

11.
Hear Res ; 399: 107894, 2021 01.
Article in English | MEDLINE | ID: mdl-31987647

ABSTRACT

Predictive coding is an influential theory of neural processing underlying perceptual inference. However, it is unknown to what extent prediction violations of different sensory features are mediated in different regions in auditory cortex, with different dynamics, and by different mechanisms. This study investigates the neural responses to synthesized acoustic syllables, which could be expected or unexpected, along several features. By using electrocorticography (ECoG) in rat auditory cortex (subjects: adult female Wistar rats with normal hearing), we aimed at mapping regional differences in mismatch responses to different stimulus features. Continuous streams of morphed syllables formed roving oddball sequences in which each stimulus was repeated several times (thereby forming a standard) and subsequently replaced with a deviant stimulus which differed from the standard along one of several acoustic features: duration, pitch, interaural level differences (ILD), or consonant identity. Each of these features could assume one of several different levels, and the resulting change from standard to deviant could be larger or smaller. The deviant stimuli were then repeated to form new standards. We analyzed responses to the first repetition of a new stimulus (deviant) and its last repetition in a stimulus train (standard). For the ECoG recording, we implanted urethane-anaesthetized rats with 8 × 8 surface electrode arrays covering a 3 × 3 mm cortical patch encompassing primary and higher-order auditory cortex. We identified the response topographies and latencies of population activity evoked by acoustic stimuli in the rat auditory regions, and mapped their sensitivity to expectation violations along different acoustic features. For all features, the responses to deviant stimuli increased in amplitude relative to responses to standard stimuli. Deviance magnitude did not further modulate these mismatch responses. Mismatch responses to different feature violations showed a heterogeneous distribution across cortical areas, with no evidence for systematic topographic gradients for any of the tested features. However, within rats, the spatial distribution of mismatch responses varied more between features than the spatial distribution of tone-evoked responses. This result supports the notion that prediction error signaling along different stimulus features is subserved by different cortical populations, albeit with substantial heterogeneity across individuals.


Subject(s)
Acoustics , Evoked Potentials, Auditory , Acoustic Stimulation , Animals , Auditory Cortex , Electroencephalography , Female , Rats , Rats, Wistar
12.
Curr Res Neurobiol ; 2: 100019, 2021.
Article in English | MEDLINE | ID: mdl-36246502

ABSTRACT

Continuous acoustic streams, such as speech signals, can be chunked into segments containing reoccurring patterns (e.g., words). Noninvasive recordings of neural activity in humans suggest that chunking is underpinned by low-frequency cortical entrainment to the segment presentation rate, and modulated by prior segment experience (e.g., words belonging to a familiar language). Interestingly, previous studies suggest that also primates and rodents may be able to chunk acoustic streams. Here, we test whether neural activity in the rat auditory cortex is modulated by previous segment experience. We recorded subdural responses using electrocorticography (ECoG) from the auditory cortex of 11 anesthetized rats. Prior to recording, four rats were trained to detect familiar triplets of acoustic stimuli (artificial syllables), three were passively exposed to the triplets, while another four rats had no training experience. While low-frequency neural activity peaks were observed at the syllable level, no triplet-rate peaks were observed. Notably, in trained rats (but not in passively exposed and naïve rats), familiar triplets could be decoded more accurately than unfamiliar triplets based on neural activity in the auditory cortex. These results suggest that rats process acoustic sequences, and that their cortical activity is modulated by the training experience even under subsequent anesthesia.

13.
Exp Mol Med ; 52(9): 1526-1536, 2020 09.
Article in English | MEDLINE | ID: mdl-32973222

ABSTRACT

Signal transducer and activator of transcription (STAT2) is a member of the STAT family that plays an essential role in immune responses to extracellular and intracellular stimuli, including inflammatory reactions, invasion of foreign materials, and cancer initiation. Although the majority of STAT2 studies in the last few decades have focused on interferon (IFN)-α/ß (IFNα/ß) signaling pathway-mediated host defense against viral infections, recent studies have revealed that STAT2 also plays an important role in human cancer development. Notably, strategic research on STAT2 function has provided evidence that transient regulatory activity by homo- or heterodimerization induces its nuclear localization where it to forms a ternary IFN-stimulated gene factor 3 (ISGF3) complex, which is composed of STAT1 and/or STAT2 and IFN regulatory factor 9 (IEF9). The molecular mechanisms of ISGF3-mediated ISG gene expression provide the basic foundation for the regulation of STAT2 protein activity but not protein quality control. Recently, previously unknown molecular mechanisms of STAT2-mediated cell proliferation via STAT2 protein quality control were elucidated. In this review, we briefly summarize the role of STAT2 in immune responses and carcinogenesis with respect to the molecular mechanisms of STAT2 stability regulation via the proteasomal degradation pathway.


Subject(s)
Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Immunity , STAT2 Transcription Factor/metabolism , Signal Transduction , Animals , Carrier Proteins , Cell Transformation, Neoplastic/genetics , Disease Susceptibility , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/etiology , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding , Protein Stability , Ubiquitination
14.
Proc Natl Acad Sci U S A ; 117(1): 584-594, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31843895

ABSTRACT

In this study, we provide critical evidence that STAT2 stability regulation plays an essential role in melanoma cell proliferation and colony growth. We found that the interaction of FBXW7 and STAT2 induced STAT2 destabilization via a ubiquitination-mediated proteasomal degradation pathway. Notably, GSK3ß-mediated STAT2 phosphorylation facilitated STAT2-FBXW7 interactions via the DNA binding domain of STAT2 and domains 1, 2, 6, and 7 of FBXW7 WD40. Importantly, the inverse correlation between protein levels of STAT2 and FBXW7 were observed not only in human melanoma cells but also in a human skin cancer tissue array. The relationship between protein levels of STAT2 and FBXW7, cell proliferation, and colony growth were similarly observed in the melanoma cell lines SK-MEL-2, -5, and -28. Moreover, STAT2 knockdown in melanoma cells suppressed melanoma cell proliferation and colony formation. These data demonstrated that FBXW7-mediated STAT2 stability regulation plays an essential role in melanoma cell proliferation and cancer growth.


Subject(s)
F-Box-WD Repeat-Containing Protein 7/metabolism , Melanoma/pathology , STAT2 Transcription Factor/metabolism , Skin Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Male , Middle Aged , Phosphorylation , Protein Stability , Proteolysis , STAT2 Transcription Factor/chemistry , STAT2 Transcription Factor/genetics , Serine/metabolism , Signal Transduction , Skin/pathology , Threonine/metabolism , Tissue Array Analysis , Ubiquitination , WD40 Repeats
15.
Cancer Lett ; 461: 78-89, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31310799

ABSTRACT

Higd-1a/HIMP1-a/HIG1, a mitochondrial inner membrane protein, promotes cell survival under low glucose and hypoxic conditions. We previously reported that it interacts with Opa1, a factor involved in mitochondrial fusion, to regulate mitochondrial homeostasis. In the present study, we found that depletion of Higd-1a inhibited the proliferation of pancreatic cancer cells in vitro and in mice xenografts. Higd-1a knockdown did not itself lead to cell death but it caused cell cycle arrest through induction of p27KIP1 and hypo-phosphorylation of RB protein. Knockdown of Higd-1a also induced cellular senescence as shown by increased granularity and SA-ß-galactosidase activity. We further showed that the mitochondrial stress induced by Higd-1a led to reduced ERK phosphorylation. Inhibition of the ERK pathway with U0126 induced p27KIP1 expression in the pancreatic cancer cells, confirming that the cell cycle retardation was the result of inhibition of the ERK pathway. Array analysis of human pancreatic cancers revealed that expression of Higd-1a was significantly elevated in pancreatic cancer tissues compared to normal tissue. Collectively, our results demonstrate that Higd-1a plays an important role in the proliferation of pancreatic cancer cells by regulating the pERK/p27KIP1/pRB signaling pathway.


Subject(s)
Biomarkers, Tumor/metabolism , Cell Proliferation , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondrial Proteins/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Pancreatic Neoplasms/pathology , Retinoblastoma Protein/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Cycle Checkpoints , Cell Movement , Cyclin-Dependent Kinase Inhibitor p27/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Nude , Mitochondrial Proteins/genetics , Mitogen-Activated Protein Kinase 3/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Phosphorylation , Prognosis , Retinoblastoma Protein/genetics , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
16.
Int J Mol Sci ; 20(8)2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31018569

ABSTRACT

Ribosomal S6 kinase 2 (RSK2), regulated by Ras/Raf/MEKs/ERKs, transmits upstream activation signals to downstream substrates including kinases and transcription and epigenetic factors. We observed that ELK members, including ELK1, 3, and 4, highly interacted with RSK2. We further observed that the RSK2-ELK3 interaction was mediated by N-terminal kinase and linker domains of RSK2, and the D and C domains of ELK3, resulting in the phosphorylation of ELK3. Importantly, RSK2-mediated ELK3 enhanced c-fos promoter activity. Notably, chemical inhibition of RSK2 signaling using kaempferol (a RSK2 inhibitor) or U0126 (a selective MEK inhibitor) suppressed EGF-induced c-fos promoter activity. Moreover, functional deletion of RSK2 by knockdown or knockout showed that RSK2 deficiency suppressed EGF-induced c-fos promoter activity, resulting in inhibition of AP-1 transactivation activity and Ras-mediated foci formation in NIH3T3 cells. Immunocytofluorescence assay demonstrated that RSK2 deficiency reduced ELK3 localization in the nucleus. In MDA-MB-231 breast cancer cells, knockdown of RSK2 or ELK3 suppressed cell proliferation with accumulation at the G1 cell cycle phase, resulting in inhibition of foci formation and anchorage-independent cancer colony growth in soft agar. Taken together, these results indicate that a novel RSK2/ELK3 signaling axis, by enhancing c-Fos-mediated AP-1 transactivation activity, has an essential role in cancer cell proliferation and colony growth.


Subject(s)
Breast Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Transcription Factors/metabolism , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Female , Gene Knockdown Techniques , HEK293 Cells , Humans , Mice , NIH 3T3 Cells , Promoter Regions, Genetic , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-ets , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Transcription Factors/genetics
17.
Mol Carcinog ; 58(7): 1221-1233, 2019 07.
Article in English | MEDLINE | ID: mdl-30887599

ABSTRACT

Mammalian target of rapamycin (mTOR) has a pivotal role in carcinogenesis and cancer cell proliferation in diverse human cancers. In this study, we observed that epimagnolin, a natural compound abundantly found in Shin-Yi, suppressed cell proliferation by inhibition of epidermal growth factor (EGF)-induced G1/S cell-cycle phase transition in JB6 Cl41 cells. Interestingly, epimagnolin suppressed EGF-induced Akt phosphorylation strongly at Ser473 and weakly at Thr308 without alteration of phosphorylation of MAPK/ERK kinases (MEKs), extracellular signal-regulated kinase (ERKs), and RSK1, resulting in abrogation of the phosphorylation of GSK3ß at Ser9 and p70S6K at Thr389. Moreover, we found that epimagnolin suppressed c-Jun phosphorylation at Ser63/73, resulting in the inhibition of activator protein 1 (AP-1) transactivation activity. Computational docking indicated that epimagnolin targeted an active pocket of the mTOR kinase domain by forming three hydrogen bonds and three hydrophobic interactions. The prediction was confirmed by using in vitro kinase and adenosine triphosphate-bead competition assays. The inhibition of mTOR kinase activity resulted in the suppression of anchorage-independent cell transformation. Importantly, epimagnolin efficiently suppressed cell proliferation and anchorage-independent colony growth of H1650 rather than H460 lung cancer cells with dependency of total and phosphorylated protein levels of mTOR and Akt. Inhibitory signaling of epimagnolin on cell proliferation of lung cancer cells was observed mainly in mTOR-Akt-p70S6K and mTOR-Akt-GSK3ß-AP-1, which was similar to that shown in JB6 Cl41 cells. Taken together, our results indicate that epimagnolin potentiates as chemopreventive or therapeutic agents by direct active pocket targeting of mTOR kinase, resulting in sensitizing cancer cells harboring enhanced phosphorylation of the mTORC2-Akt-p70S6k signaling pathway.


Subject(s)
Cell Transformation, Neoplastic/drug effects , Lignans/pharmacology , Lung Neoplasms/drug therapy , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/pathology , Chemoprevention , Drugs, Chinese Herbal/pharmacology , Epidermal Growth Factor/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , G1 Phase Cell Cycle Checkpoints/drug effects , Glycogen Synthase Kinase 3 beta/metabolism , HEK293 Cells , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Lung Neoplasms/pathology , Mice , Molecular Docking Simulation , Phosphorylation/drug effects , Protein Conformation , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , RNA, Small Interfering/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism
18.
Proc Natl Acad Sci U S A ; 116(8): 3294-3299, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30718391

ABSTRACT

The parathyroid hormone (PTH) and its related peptide (PTHrP) activate PTH receptor (PTHR) signaling, but only the PTH sustains GS-mediated adenosine 3',5'-cyclic monophosphate (cAMP) production after PTHR internalization into early endosomes. The mechanism of this unexpected behavior for a G-protein-coupled receptor is not fully understood. Here, we show that extracellular Ca2+ acts as a positive allosteric modulator of PTHR signaling that regulates sustained cAMP production. Equilibrium and kinetic studies of ligand-binding and receptor activation reveal that Ca2+ prolongs the residence time of ligands on the receptor, thus, increasing both the duration of the receptor activation and the cAMP signaling. We further find that Ca2+ allostery in the PTHR is strongly affected by the point mutation recently identified in the PTH (PTHR25C) as a new cause of hypocalcemia in humans. Using high-resolution and mass accuracy mass spectrometry approaches, we identified acidic clusters in the receptor's first extracellular loop as key determinants for Ca2+ allosterism and endosomal cAMP signaling. These findings coupled to defective Ca2+ allostery and cAMP signaling in the PTHR by hypocalcemia-causing PTHR25C suggest that Ca2+ allostery in PTHR signaling may be involved in primary signaling processes regulating calcium homeostasis.


Subject(s)
Cyclic AMP/genetics , Hypocalcemia/genetics , Parathyroid Hormone/genetics , Receptor, Parathyroid Hormone, Type 1/genetics , Allosteric Regulation/genetics , Animals , COS Cells , Calcium Signaling/genetics , Chlorocebus aethiops , Cyclic AMP/metabolism , Humans , Hypocalcemia/metabolism , Hypocalcemia/pathology , Kinetics , Ligands , Parathyroid Hormone/metabolism , Parathyroid Hormone-Related Protein/genetics , Point Mutation/genetics , Protein Binding/genetics , Receptor, Parathyroid Hormone, Type 1/metabolism
19.
Mol Carcinog ; 58(1): 88-101, 2019 01.
Article in English | MEDLINE | ID: mdl-30230030

ABSTRACT

Ras/Raf/MEKs/ERKs and PI3 K/Akt/mTOR signaling pathways have key roles in cancer development and growth processes, as well as in cancer malignance and chemoresistance. In this study, we screened the therapeutic potential of magnolin using 15 human cancer cell lines and combined magnolin sensitivity with the CCLE mutaome analysis for relevant mutation information. The results showed that magnolin efficacy on cell proliferation inhibition were lower in TOV-112D ovarian cancer cells than that in SKOV3 cells by G1 and G2/M cell cycle phase accumulation. Notably, magnolin suppressed colony growth of TOV-112D cells in soft agar, whereas colony growth of SKOV3 cells in soft agar was not affected by magnolin treatment. Interestingly, phospho-protein profiles in the MAPK and PI3 K signaling pathways indicated that SKOV3 cells showed marked increase of Akt phosphorylation at Thr308 and Ser473 and very weak ERK1/2 phosphorylation levels by EGF stimulation. The phospho-protein profiles in TOV-112D cells were the opposite of those of SKOV3 cells. Importantly, magnolin treatment suppressed phosphorylation of RSKs in TOV-112D, but not in SKOV3 cells. Moreover, magnolin increased SA-ß-galactosidase-positive cells in a dose-dependent manner in TOV-112D cells, but not in SKOV3 cells. Notably, oral administration of Shin-Yi fraction 1, which contained magnolin approximately 53%, suppressed TOV-112D cell growth in athymic nude mice by induction of p16Ink4a and p27Kip1 . Taken together, targeting of ERK1 and ERK2 is suitable for the treatment of ovarian cancer cells that do not harbor the constitutive active P13 K mutation and the loss-of-function mutations of the p16 and/or p53 tumor suppressor proteins.


Subject(s)
Cell Proliferation/drug effects , Cellular Senescence , Gene Expression Regulation, Neoplastic/drug effects , Lignans/pharmacology , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Ovarian Neoplasms/pathology , Animals , Apoptosis , Drug Resistance, Neoplasm , Female , Humans , Male , Mice , Mice, Nude , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Signal Transduction , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
20.
EMBO J ; 36(8): 1011-1028, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28279976

ABSTRACT

Oxygen deprivation induces a range of cellular adaptive responses that enable to drive cancer progression. Here, we report that lysine-specific demethylase 1 (LSD1) upregulates hypoxia responses by demethylating RACK1 protein, a component of hypoxia-inducible factor (HIF) ubiquitination machinery, and consequently suppressing the oxygen-independent degradation of HIF-1α. This ability of LSD1 is attenuated during prolonged hypoxia, with a decrease in the cellular level of flavin adenine dinucleotide (FAD), a metabolic cofactor of LSD1, causing HIF-1α downregulation in later stages of hypoxia. Exogenously provided FAD restores HIF-1α stability, indicating a rate-limiting role for FAD in LSD1-mediated HIF-1α regulation. Transcriptomic analyses of patient tissues show that the HIF-1 signature is highly correlated with the expression of LSD1 target genes as well as the enzymes of FAD biosynthetic pathway in triple-negative breast cancers, reflecting the significance of FAD-dependent LSD1 activity in cancer progression. Together, our findings provide a new insight into HIF-mediated hypoxia response regulation by coupling the FAD dependence of LSD1 activity to the regulation of HIF-1α stability.


Subject(s)
Flavin-Adenine Dinucleotide/metabolism , Gene Expression Regulation , Histone Demethylases/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Ubiquitination , Cell Hypoxia , Flavin-Adenine Dinucleotide/genetics , Histone Demethylases/genetics , Human Umbilical Vein Endothelial Cells/pathology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Protein Stability
SELECTION OF CITATIONS
SEARCH DETAIL
...