Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 89
1.
ACS Nano ; 2024 Jun 21.
Article En | MEDLINE | ID: mdl-38904507

Recently, aqueous iron ion batteries (AIIBs) using iron metal anodes have gained traction in the battery community as low-cost and sustainable solutions for green energy storage. However, the development of AIIBs is significantly hindered by the limited capacity of existing cathode materials and the poor intercalation kinetic of Fe2+. Herein, we propose a H+ and Fe2+ co-intercalation electrochemistry in AIIBs to boost the capacity and rate capability of cathode materials such as iron hexacyanoferrate (FeHCF) and Na4Fe3(PO4)2(P2O7) (NFPP). This is achieved through an electrochemical activation step during which a FeOOH nanowire layer is formed in situ on the cathode. This layer facilitates H+ co-intercalation in AIIBs, resulting in a high specific capacity of 151 mAh g-1 and 93% capacity retention over 500 cycles for activated FeHCF cathodes. We found that this activation process can also be applied to other cathode chemistries, such as NFPP, where we found that the cathode capacity is doubled as a result of this process. Overall, the proposed H+/Fe2+ co-insertion electrochemistry expands the range of applications for AIBBs, in particular as a sustainable solution for storing renewable energy.

2.
Small ; : e2402325, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822721

In the search for next-generation green energy storage solutions, Cu-S electrochemistry has recently gained attraction from the battery community owing to its affordability and exceptionally high specific capacity of 3350 mAh gs -1. However, the inferior conductivity and substantial volume expansion of the S cathode hinder its cycling stability, while the low output voltage limits its energy density. Herein, a hollow carbon sphere (HCS) is synthesized as a 3D conductive host to achieve a stable S@HCS cathode, which enables an outstanding cycling performance of 2500 cycles (over 9 months). To address the latter, a Zn//S@HCS alkaline-acid decoupled cell is configured to increase the output voltage from 0.18 to 1.6 V. Moreover, an electrode and electrolyte co-energy storage mechanism is proposed to offset the reduction in energy density resulting from the extra electrolyte required in Zn//S decoupled cells. When combined, the Zn//S@HCS alkaline-acid decoupled cell delivers a record energy density of 334 Wh kg-1 based on the mass of the S cathode and CuSO4 electrolyte. This work tackles the key challenges of Cu-S electrochemistry and brings new insights into the rational design of decoupled batteries.

3.
J Colloid Interface Sci ; 673: 104-112, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38875782

Flexible electrodes based on conversion-type materials have potential applications in low-cost and high-performance flexible sodium-ion batteries (FSIBs), owing to their high theoretical capacity and appropriate sodiation potential. However, they suffer from flexible electrodes with poor mechanical properties and sluggish reaction kinetics. In this study, freestanding CoS2 nanoparticles coupled with graphene oxides and carbon nanotubes (CoS2/GO/CNTs) flexible films with robust and interconnected architectures were successfully synthesized. CoS2/GO/CNTs flexible film displays high electronic conductivity and superior mechanical properties (average tensile strength of 21.27 MPa and average toughness of 393.18 KJ m-3) owing to the defect bridge for electron transfer and the formation of the π-π interactions between CNTs and GO. In addition, the close contact between the CoS2 nanoparticles and carbon networks enabled by the Co-N chemical bond prevents the self-aggregation of the CoS2 nanoparticles. As a result, the CoS2/GO/CNTs flexible film delivered superior rate capability (213.5 mAh g-1 at 6 A g-1, better than most reported flexible anode) and long-term cycling stability. Moreover, the conversion reaction that occurred in the CoS2/GO/CNTs flexible film exhibited pseudocapacitive behavior. This study provides meaningful insights into the development of flexible electrodes with superior mechanical properties and electrochemical performance for energy storage.

4.
Article En | MEDLINE | ID: mdl-38915250

Calcium ion batteries (CIBs) are a promising energy storage device due to the low redox potential of the Ca metal and the abundant reserves of the Ca element. However, the large radius and divalent nature of Ca2+ lead to its slow ion diffusion kinetics and the lack of suitable electrode materials for Ca storage. Here, a layered structure of Na2Ti3O7 (NTO) is presented as an anode material for nonaqueous CIBs. This NTO anode demonstrates a high discharge capacity of 165 mA h g-1 at 100 mA g-1 and a remarkable capacity retention rate of 80%, even after 2000 cycles at 500 mA g-1, surpassing the performance of all reported intercalation-type anode materials for CIBs. The NTO transfers to layered CaVIINaIXTi3O7 (CNTO) with intercalation of Ca2+ and extraction of Na+ during the first discharge process. Then, the CNTO undergoes the reversible insertion/extraction of Ca2+ during subsequent cycling. Additionally, density functional theory calculations reveal that NTO possesses a rapid two-dimensional diffusion pathway for Ca2+. Moreover, the full CIBs based on NTO as the anode further underscore its potential for CIBs. This work presents promising anode materials for CIBs, offering opportunities to promote the development of high-performance CIBs.

5.
Chem Commun (Camb) ; 2024 Jun 14.
Article En | MEDLINE | ID: mdl-38872581

Zinc ion batteries (ZIBs) have emerged as promising candidates for renewable energy storage owing to their affordability, safety, and sustainability. However, issues with Zn metal anodes, such as dendrite growth, hydrogen evolution reaction (HER), and corrosion, significantly hinder the practical application of ZIBs. To address these issues, organic solid electrolyte interface (SEI) layers have gained traction in the ZIB community as they can, for instance, help achieve uniform Zn plating/stripping and suppress side reactions. This article summarizes recent advances in organic artificial SEI layers for ZIB anodes, including their fabrication methods, electrochemical performance, and degradation suppression mechanisms.

6.
Adv Mater ; : e2403371, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702927

Calcium-ion batteries (CIBs) have emerged as a promising alternative for electrochemical energy storage. The lack of high-performance cathode materials severely limits the development of CIBs. Vanadium oxides are particularly attractive as cathode materials for CIBs, and preinsertion chemistry is often used to improve their calcium storage performance. However, the room temperature cycling lifespan of vanadium oxides in organic electrolytes still falls short of 1000 cycles. Here, based on preinsertion chemistry, the cycling life of vanadium oxides is further improved by integrated electrode and electrolyte engineering. Utilizing a tailored Ca electrolyte, the constructed freestanding (NH4)2V6O16·1.35H2O@graphene oxide@carbon nanotube (NHVO-H@GO@CNT) composite cathode achieves a 305 mAh g-1 high capacity and 10 000 cycles record-long life. Additionally, for the first time, a Ca-ion hybrid capacitor full cell is assembled and delivers a capacity of 62.8 mAh g-1. The calcium storage mechanism of NHVO-H@GO@CNT based on a two-phase reaction and the exchange of NH4 + and Ca2+ during cycling are revealed. The lattice self-regulation of V─O layers is observed and the layered vanadium oxides with Ca2+ pillars formed by ion exchange exhibit higher capacity. This work provides novel strategies to enhance the calcium storage performance of vanadium oxides via integrated structural design of electrodes and electrolyte modification.

7.
Angew Chem Int Ed Engl ; : e202406292, 2024 May 23.
Article En | MEDLINE | ID: mdl-38780997

Aqueous Zn-ion batteries are an attractive electrochemical energy storage solution for their budget and safe properties. However, dendrites and uncontrolled side reactions in anodes detract the cycle life and energy density of the batteries.Grain boundaries in metals are generally considered as the source of the above problems but we present a diverse result. This study introduces an ultra-high proportion of grain boundaries on zinc electrodes through femtosecond laser bombardment to enhance stability of zinc metal/electrolyte interface.The ultra-high proportion of grain boundaries promotes the homogenization of zinc growth potential, to achieve uniform nucleation and growth, thereby suppressing dendrite formation. Additionally, the abundant active sites mitigate the side reactions during the electrochemical process. Consequently, the 15-µm-Fs-Zn||MnO2 pouch cell achieves an energy density of 249.4 Wh kg-1 and  operates for over 60 cycles at a depth-of-discharge of 23%. The recognition of the favorable influence exerted by UP-GBs paves a new way for other metal batteries.

8.
ACS Nano ; 18(23): 15239-15248, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38807482

Simple magnesium (Mg) salt solutions are widely considered as promising electrolytes for next-generation rechargeable Mg metal batteries (RMBs) owing to the direct Mg2+ storage mechanism. However, the passivation layer formed on Mg metal anodes in these electrolytes is considered the key challenge that limits its applicability. Numerous complex halogenide additives have been introduced to etch away the passivation layer, nevertheless, at the expense of the electrolyte's anodic stability and cathodes' cyclability. To overcome this dilemma, here, we design an electrolyte with a weakly coordinated solvation structure which enables passivation-free Mg deposition while maintaining a high anodic stability and cathodic compatibility. In detail, we successfully introduce a hexa-fluoroisopropyloxy (HFIP-) anion into the solvation structure of Mg2+, the weakly [Mg-HFIP]+ contact ion pair facilitates Mg2+ transportation across interfaces. As a consequence, our electrolyte shows outstanding compatibility with the RMBs. The Mg||PDI-EDA and Mg||Mo6S8 full cells use this electrolyte demonstrating a decent capacity retention of ∼80% over 400 cycles and 500 cycles, respectively. This represents a leap in cyclability over simple electrolytes in RMBs while the rest can barely cycle. This work offers an electrolyte system compatible with RMBs and brings deeper understanding of modifying the solvation structure toward practical electrolytes.

9.
Chem Commun (Camb) ; 60(46): 5968-5971, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38767594

V6O13 with a nanosheet structure was employed as a cathode material for aqueous zinc metal batteries. V6O13 delivered a high specific capacity of 425 mA h g-1, outstanding rate performance and durable cycling with high capacity retention of 86% after 3000 cycles. Moreover, in situ X-ray diffractometer (XRD), ex situ X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) were employed to ascertain the reaction mechanism of Zn2+ storage.

10.
J Colloid Interface Sci ; 666: 371-379, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38603879

VO2 (B) is recognized as a promising cathode material for aqueous zinc metal batteries (AZMBs) owing to its remarkable specific capacity and its unique, expansive tunnel structure, which facilitates the reversible insertion and extraction of Zn2+. Nonetheless, challenges such as the inherent instability of the VO2 structure, poor ion/electron transport and a limited capacity due to the low redox potential of the V3+/V4+ couple have hindered its wider application. In this study, we present a strategy to replace vanadium ions by doping Al3+ in VO2. This approach activates the multi-electron reaction (V4+/V5+), to increase the specific capacity and improve the structural stability by forming robust V5+O and Al3+O bonds. It also induces a local electric field by altering the local electron arrangement, which significantly accelerates the ion/electron transport process. As a result, Al-doped VO2 exhibits superior specific capacity, improved cycling stability, and accelerated electronic transport kinetics compared to undoped VO2. The beneficial effects of heterogeneous atomic doping observed here may provide valuable insights into the improvement electrode materials in metal-ion battery systems other than those based on Zn.

11.
Adv Mater ; 36(15): e2307151, 2024 Apr.
Article En | MEDLINE | ID: mdl-38190759

Advanced battery electrodes require a cautious design of microscale particles with built-in nanoscale features to exploit the advantages of both micro- and nano-particles relative to their performance attributes. Herein, the dynamic behavior of nanosized Sn clusters and their host pores in carbon nanofiber) during sodiation and desodiation is revealed using a state-of-the-art 3D electron microscopic reconstruction technique. For the first time, the anomalous expansion of Sn clusters after desodiation is observed owing to the aggregation of clusters/single atoms. Pore connectivity is retained despite the anomalous expansion, suggesting inhibition of solid electrolyte interface formation in the sub-2-nm pores. Taking advantage of the built-in nanoconfinement feature, the CNF film with nanometer-sized interconnected pores hosting Sn clusters (≈2 nm) enables high utilization (95% at a high rate of 1 A g-1) of Sn active sites while maintaining an improved initial Coulombic efficiency of 87%. The findings provide insights into electrochemical reactions in a confined space and a guiding principle in electrode design for battery applications.

12.
J Phys Chem Lett ; 15(5): 1321-1327, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38285647

Emerging aqueous ammonium-ion batteries (AIBs) are considered inexpensive, highly safe, ecofriendly, and sustainable energy storage systems. Although some high-performance electrode materials have been reported for AIBs, a comprehensive understanding of the origin of the high ammonium-ion storage performance is still lacking. Herein, the percolating network of anionic vacancies is determined to be the origin of the superior ammonium-ion storage properties of the Prussian blue analogues based on ab initio molecular dynamics simulation and electrochemical kinetic analyses. Fe[Fe(CN)6] with a percolating anionic vacancy network delivers an outstanding rate of 64.7 mAh g-1 at 2000 mA g-1 in addition to a capacity retention of 94.5% after 10 000 cycles. The low-strain intercalation ammonium-ion storage mechanism of highly deficient Fe Prussian blue with Fe as the redox center is revealed by in situ X-ray diffraction and ex situ X-ray absorption fine structure analysis. The results provide insights into the mechanism of ammonium-ion storage in Prussian blue analogues and guidance in the development of aqueous AIBs.

13.
J Colloid Interface Sci ; 659: 267-275, 2024 Apr.
Article En | MEDLINE | ID: mdl-38176236

Vanadium-based materials are widely recognized as the primary candidate cathode materials for aqueous Zn-ion batteries (AZIBs). However, slow kinetics and poor stability pose significant challenges for widespread application. Herein, to address these issues, alkali metal ions and polyaniline (PANI) are introduced into layered hydrated V2O5 (VO). Density functional theory calculations reveal that the synthesized (C6H4NH)0.27K0.24V2O5·0.92H2O (KPVO), with K+ and PANI co-intercalation, exhibits a robust interlayer structure and a continuous three-dimensional (3D) electron transfer network. These properties facilitate the reversible diffusion of Zn2+ with a low migration potential barrier and rapid response kinetics. The KPVO cathode exhibits a discharge specific capacity of 418.3 mAh/g at 100 mA/g and excellent cycling stability with 89.5 % retention after 3000 cycles at 5 A/g. This work provides a general strategy for integrating cathode materials to achieve high specific capacity and excellent kinetic performance.

14.
Small ; 20(12): e2307902, 2024 Mar.
Article En | MEDLINE | ID: mdl-37950404

A rational design of sulfur host is the key to conquering the"polysulfide shuttle effects" by accelerating the polysulfide conversion. Since the process involves solid-liquid-solid multistep phase transitions, purposely-engineered heterostructure catalysts with various active regions for catalyzing conversion steps correspondingly are beneficial to promote the overall conversion process. However, the functionalities of the materials surface and interface in heterostructure catalysts remain unclear. In this work, an Mo2C/MoC catalyst with abundant Mo2C surface-interface-MoC surface tri-active-region is developed by in situ converting the MoZn-metal organic framework. The experimental and simulation studies demonstrate the interface can catch long-chain polysulfides and promote their conversion. Instead, the Mo2C and MoC tend to accommodate the short-chain polysulfide and accelerate their conversion and the Li2S dissociation. Benefitting from the high catalytic ability, the Li-S battery assembled with the Mo2C/MoC-S cathode shows more discrete redox reactions and delivers a high initial capacity of 1603.6 mAh g-1 at 1 C charging-discharging rate, which is over twofolds of the one assembled using individual hosts, and 80.4% capacity can be maintained after 1000 cycles at 3 C rate. This work has demonstrated a novel synergy between the interface and material surface, which will help the future design of high-performance Li-S batteries.

15.
Small Methods ; 8(1): e2300865, 2024 Jan.
Article En | MEDLINE | ID: mdl-37800984

Aqueous Ca-ion batteries (ACIBs) attract immense attention due to its high safety and the high abundance of calcium. However, the development of ACIBs is hindered by the lack of high voltage cathode materials to host the large radius and divalent Ca2+ . Herein, polyanionic phosphate K3 V2 (PO4 )3 /C (KVP/C) is provided as a new cathode material for ACIBs. Due to the robust structure of polyanion material and the wide electrochemical window of water-in-salt electrolyte, KVP/C delivers a high working voltage of 3.74 V versus Ca2+ /Ca with a specific capacity of 102.4 mAh g-1 and a long-life of 6000 cycles at 500 mA g-1 . Furthermore, the calcium storage mechanism of KVP/C is shown to be the coexistence of solid solution and two-phase reaction by in situ X-ray diffraction, ex situ transmission electron microscope, and X-ray photoelectron spectroscopy. Finally, an aqueous calcium-ion full cell, based on an organic compound as anode and KVP/C as cathode, is constructed and it shows good stability for 200 cycles and a specific capacity of 80.2 mAh g-1 . This work demonstrates that vanadium-based phosphate materials are promising high-voltage cathode materials for ACIBs and renew the prospects for ACIBs.

16.
Small ; 20(14): e2308282, 2024 Apr.
Article En | MEDLINE | ID: mdl-37987150

Developing low-cost and long-cycling-life aqueous zinc (Zn) ion capacitors (AZICs) for large-scale electrochemical energy storage still faces the challenges of dendritic Zn deposition and interfacial side reactions. Here, an interface engineering strategy utilizing a dibenzenesulfonimide (BBI) additive is employed to enhance the stability of the Zn metal anode/electrolyte interface. The first-principles calculation results demonstrate that BBI anions can be chemically adsorbed on Zn metal. Meanwhile, the experimental results confirm that the BBI-Zn interfacial layer converts the original water-richelectric double layer (EDL) into a water-poor EDL, effectively inhibiting the water related parasitic reaction at the electrode/electrolyte interface. In addition, the BBI-Zn interfacial layer introduces an additional Zn ions (Zn2+) migration energy barrier, increasing the Zn2+ de-solvation activation energy, consequently raising the Zn2+ nucleation overpotential, and thus achieving the compact and uniform Zn deposition behavior. Furthermore, the solid electrolyte interphase (SEI) layer derived from the BBI-Zn interfacial layer during cycling can further maintain the interfacial stability of the Zn anode. Owing to the above favorable features, the assembled AZIC exhibits an ultra-long cycling life of over 300 000 cycles based on the additive engineering strategy, which shows application prospects in high-performance AZICs.

17.
Energy Environ Sci ; 16(12): 5832-5841, 2023 Dec 06.
Article En | MEDLINE | ID: mdl-38076637

The Daniell cell (Cu vs. Zn), was invented almost two centuries ago, but has been set aside due to its non-rechargeable nature and limited energy density. However, these cells are exceptionally sustainable because they do not require rare earth elements, are aqueous and easy to recycle. This work addresses key challenges in making Daniell cells relevant to our current energy crisis. First, we propose new approaches to stabilise Zn and Cu plating and stripping processes and create a rechargeable cell. Second, we replace salt bridges with an anion exchange membrane, or a bipolar membrane for alkaline-acid hybrid Zn-Cu batteries operating at 1.56 V. Finally, we apply these changes in pouch cells in order to increase energy and power density. These combined developments result in a rechargeable Daniell cell, which can achieve high areal capacities of 5 mA h cm-2 and can easily be implemented in 1 A h pouch cells.

18.
ACS Nano ; 17(22): 23046-23056, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-37934487

Calcium-ion batteries are an emerging energy storage device owing to the low redox potential of Ca2+/Ca and the naturally abundant reserves of the Ca element. However, the high charge density and large radius of Ca2+ lead to a low calcium storage capacity or unsatisfactory cycling performance for most electrode materials. Herein, we report the organic crystal 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) as an anode material for aqueous calcium-ion batteries (ACIBs) in a water-in-salt electrolyte. PTCDI delivers a high discharge capacity of 131.8 mAh g-1, excellent rate performance (86.2 mAh g-1@10000 mA g-1), and an ultralong life of 68000 cycles (over 470 days) with a high capacity retention of 72.7%. The calcium storage mechanism of PTCDI is shown to be an enolization reaction by in situ attenuated total reflectance Fourier-transform infrared and ex situ X-ray photoelectron spectroscopy. The activation mechanism of PTCDI microribbon splitting along the (020) crystal plane is studied by in situ X-ray diffraction, 3D tomography reconstruction technologies, and ex situ transmission electron microscopy. In addition, the Ca2+ storage sites and diffusion pathways of PTCDI are studied by density functional theory calculations. Finally, by matching a high-voltage Prussian blue analogue cathode, the assembled aqueous calcium-ion full cells exhibit excellent wide-temperature operating capability (-20 to +50 °C) and an ultralong life of 30000 cycles. Further, an aqueous calcium-ion pouch cell is constructed and exhibits a long lifetime of over 500 cycles.

19.
Sci Bull (Beijing) ; 68(23): 2993-3002, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37858408

An oxidation layer on a Zn surface is considered to play a negative role in hindering the practical applications of aqueous zinc ion batteries (AZBs). Herein, we demonstrate the importance of Zn-surface termination on the overall electrochemical behavior of AZBs by revisiting the well-known bottleneck issues. Experimental characterizations in conjugation with theoretical calculations reveal that the formation of a dense Zn4(OH)6SO4·xH2O (ZSH) layer from the well-designed surface-oxide termination layer improves the interface stability of the Zn anode and reduces the dehydration energy of Zn(H2O)62+, thereby accelerating the interface transport kinetics of Zn2+. Moreover, instead of directly diffusing over the ZSH layer, a new "edge dehydration-along edge transfer" mechanism of Zn2+ is discovered. Owing to the presence of a Zn anode with a ZnO-derived ZSH layer, an ultrahigh stability of over 1200 h with a high cumulative-plated capacity of 6.24mAh cm-2 is achieved with a symmetrical cell. Furthermore, high cycling stability (over 1000 cycles) and Coulombic efficiency (99.07%) are obtained in the entire AZBs with a MnO2 cathode. An understanding of the oxygen surface termination mechanism is beneficial to Zn-anode protection and is a timely forward step toward the long-pursued practical application of AZBs.

20.
Angew Chem Int Ed Engl ; 62(37): e202308961, 2023 Sep 11.
Article En | MEDLINE | ID: mdl-37488950

Co-insertion of protons happens widely and enables divalent-ion aqueous batteries to achieve high performances. However, detailed investigations and comprehensive understandings of proton co-insertion are scarce. Herein, we demonstrate that proton co-insertion into tunnel materials is determined jointly by interface derivation and inner diffusion: at the interface, hdrated Mg2+ has poor insertion kinetics, and therefore accumulates and hydrolyzes to produce protons; in the tunnels, co-inserted/lattice H2 O molecules block the Mg2+ diffusion while facilitate the proton diffusion. When monoclinic vanadium dioxide (VO2 (B)) anode is tested in Mg(CH3 COO)2 aqueous solution, the formation of Mg-rich solid electrolyte interphase on the VO2 (B) electrode and co-insertion of derived protons are probed; in the tunnels, the diffusion energy barrier of Mg2+ +H2 O is 2.7 eV, while that of the protons is 0.37 eV. Thus, protons dominate the subsequent insertion and inner diffusion. As a consequence, the VO2 (B) achieves a high capacity of 257.0 mAh g-1 at 1 A g-1 , a high rate retention of 59.1 % from 1 to 8 A g-1 , and stable cyclability of 3000 times with a capacity retention of 81.5 %. This work provides an in-depth understanding of the proton co-insertion and may promote the development of rechargeable aqueous batteries.

...