Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 16(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38893129

ABSTRACT

BACKGROUND: With the development of some new antibody-drug conjugates, the HER2 classification of breast carcinomas now includes the HER2-low (H2L) category: IHC 1+, 2+ non-amplified by ISH, and double-equivocal carcinomas, mostly luminal, expressing hormone receptors (HR+). METHODS: We analyzed mutational status and transcriptomic activities of three HER2 effector pathways: PI3K-AKT, MAPK, and JAK-STAT, in association with clinicopathologic features, in 62 H2L carcinomas compared to 43 HER2-positive and 20 HER2-negative carcinomas, all HR+. RESULTS: H2L carcinomas had significantly lower histoprognostic grades and mitotic and Ki67 proliferation indexes than HER2-positive carcinomas. Their PIK3CA mutation rates were close to those of HER2-negative and significantly higher than in HER2-positive carcinomas, contrary to TP53 mutations. At the transcriptomic level, we identified three distinct groups which did not reflect the new HER2 classification. H2L and HER2-negative carcinomas shared most of clinicopathological and molecular characteristics, except HER2 membrane expression (mRNA levels). The presence of a mutation in a signaling pathway had a strong pathway activation effect. PIK3CA mutations were more prevalent in H2L carcinomas, leading to a strong activation of the PI3K-AKT signaling pathway even in the absence of HER2 overexpression/amplification. CONCLUSION: PIK3CA mutations may explain the failure of conventional anti-HER2 treatments, suggesting that new antibody-drug conjugates may be more effective.

2.
Anim Genet ; 55(4): 644-657, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38922751

ABSTRACT

We recently discovered that the Manech Tête Rousse (MTR) deficient homozygous haplotype 2 (MTRDHH2) probably carries a recessive lethal mutation in sheep. In this study, we fine-mapped this region through whole-genome sequencing of five MTRDHH2 heterozygous carriers and 95 non-carriers from various ovine breeds. We identified a single base pair duplication within the SLC33A1 gene, leading to a frameshift mutation and a premature stop codon (p.Arg246Alafs*3). SLC33A1 encodes a transmembrane transporter of acetyl-coenzyme A that is crucial for cellular metabolism. To investigate the lethality of this mutation in homozygous MTR sheep, we performed at-risk matings using artificial insemination (AI) between heterozygous SLC33A1 variant carriers (SLC33A1_dupG). Pregnancy was confirmed 15 days post-AI using a blood test measuring interferon Tau-stimulated MX1 gene expression. Ultrasonography between 45 and 60 days post-AI revealed a 12% reduction in AI success compared with safe matings, indicating embryonic/fetal loss. This was supported by the MX1 differential expression test suggesting fetal losses between 15 and 60 days of gestation. We also observed a 34.7% pre-weaning mortality rate in 49 lambs born from at-risk matings. Homozygous SLC33A1_dupG lambs accounted for 47% of this mortality, with deaths occurring mostly within the first 5 days without visible clinical signs. Therefore, appropriate management of SLC33A1_dupG with an allele frequency of 0.04 in the MTR selection scheme would help increase overall fertility and lamb survival.


Subject(s)
Sheep, Domestic , Animals , Female , Sheep, Domestic/genetics , Pregnancy , Gene Duplication , Insemination, Artificial/veterinary , Homozygote , Frameshift Mutation , Abortion, Veterinary/genetics , Haplotypes , Sheep/genetics
3.
Genet Sel Evol ; 56(1): 16, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424485

ABSTRACT

BACKGROUND: Recessive deleterious variants are known to segregate in livestock populations, as in humans, and some may be lethal in the homozygous state. RESULTS: We used phased 50 k single nucleotide polymorphism (SNP) genotypes and pedigree data to scan the genome of 6845 Manech Tête Rousse dairy sheep to search for deficiency in homozygous haplotypes (DHH). Five Manech Tête Rousse deficient homozygous haplotypes (MTRDHH1 to 5) were identified, with a homozygous deficiency ranging from 84 to 100%. These haplotypes are located on Ovis aries chromosome (OAR)1 (MTRDHH2 and 3), OAR10 (MTRDHH4), OAR13 (MTRDHH5), and OAR20 (MTRDHH1), and have carrier frequencies ranging from 7.8 to 16.6%. When comparing at-risk matings between DHH carriers to safe matings between non-carriers, two DHH (MTRDHH1 and 2) were linked with decreased insemination success and/or increased stillbirth incidence. We investigated the MTRDHH1 haplotype, which substantially increased stillbirth rate, and identified a single nucleotide variant (SNV) inducing a premature stop codon (p.Gln409*) in the methylmalonyl-CoA mutase (MMUT) gene by using a whole-genome sequencing approach. We generated homozygous lambs for the MMUT mutation by at-risk mating between heterozygous carriers, and most of them died within the first 24 h after birth without any obvious clinical symptoms. Reverse transcriptase-qPCR and western blotting on post-mortem liver and kidney biological samples showed a decreased expression of MMUT mRNA in the liver and absence of a full-length MMUT protein in the mutant homozygous lambs. CONCLUSIONS: We identified five homozygous deficient haplotypes that are likely to harbor five independent deleterious recessive variants in sheep. One of these was detected in the MMUT gene, which is associated with lamb lethality in the homozygous state. A specific management of these haplotypes/variants in the MTR dairy sheep selection program would help enhance the overall fertility and lamb survival.


Subject(s)
Stillbirth , Pregnancy , Humans , Female , Animals , Sheep/genetics , Haplotypes , Animals, Newborn , Stillbirth/genetics , Stillbirth/veterinary , Homozygote , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL