Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Language
Publication year range
1.
Animal ; 17 Suppl 5: 100896, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37500377

ABSTRACT

To reduce P excretion and increase the sustainability of poultry farms, one needs to understand the mechanisms surrounding P metabolism and its close link with Ca metabolism to precisely predict the fate of dietary P and Ca and related requirements for birds. This study describes and evaluates a model developed to estimate the fate of Ca and P consumed by broilers. The Ca and P model relies on three modules: (1) digestion of Ca and P; (2) dynamics of Ca and P in soft tissue and feathers; and (3) dynamics of body ash. Exogenous phytase affects the availability of Ca and P; thus, to predict the absorption of those minerals, the model also accounts for the effect of phytase on Ca and P digestibility. We used a database to estimate the consequences of dietary Ca, P, and phytase over feed intake response. This study followed a four-step process: (1) Ca and P model development and its coupling with a growth broiler model; (2) model behavior assessment; (3) sensitivity analysis to identify the most influential parameters; and (4) external evaluation based on three databases. The proportion of P in body protein and the Ca to P ratio in bone are the most sensitive parameters of P deposition in soft tissue and bone, representing 91 and 99% of the total variation. The external evaluation results indicated that body water and protein had an overall mean square prediction error (rMSPE) of 7.22 and 12.3%, respectively. The prediction of body ash, Ca, and P had an rMSPE of 7.74, 11.0, and 6.56%, respectively, mostly errors of disturbances (72.5, 51.6, and 90.7%, respectively). The rMSPE for P balance was 13.3, 18.4, and 22.8%, respectively, for P retention, excretion, and retention coefficient, with respective errors due to disturbances of 69.1, 99.9, and 51.3%. We demonstrated a mechanistic model approach to predict the dietary effects of Ca and P on broiler chicken responses with low error, including detailed simulations to show the confidence level expected from the model outputs. Overall, this model predicts broilers' response to dietary Ca and P. The model could aid calculations to minimize P excretion and reduce the impact of broiler production on the environment. A model inversion is ongoing that will enable the calculation of Ca and P dietary quantities for a specific objective. This will simplify the use of the model and the feed formulation process.


Subject(s)
6-Phytase , Phosphorus, Dietary , Animals , Calcium, Dietary/metabolism , Phosphorus/metabolism , Chickens/physiology , 6-Phytase/analysis , Minerals/metabolism , Diet/veterinary , Phosphorus, Dietary/metabolism , Proteins/metabolism , Animal Feed/analysis , Dietary Supplements/analysis , Animal Nutritional Physiological Phenomena
2.
Poult Sci ; 98(3): 1288-1301, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30329123

ABSTRACT

One hundred and twenty Cobb 500 hens, 20 wk of age, were randomly allocated into individual cages with the objective of estimating their Zn requirements. The study was composed of 3 phases: adaptation to cages (basal diet), depletion (deficient diet containing 18.7 ± 0.47 ppm Zn) for 7 wk, and experimental phases. Hens were fed diets with graded increments of Zn sulfate heptahydrate (ZnSO4·7H2O), totaling 18.7 ± 0.47, 50.3 ± 10.6, 77.3.0 ± 11.0, 110.2 ± 12.8, 140 ± 12.2, and 170.6 ± 13.2 ppm analyzed Zn in feeds for 12 wk (experimental phase). Requirements of Zn were done using quadratic polynomial (QP), broken line quadratic (BLQ), and exponential asymptotic (EA) models. In general, the non-linear statistical models were the ones that best fit the results in this study. Requirements obtained for hen day egg production and settable egg production were 83.3, 78.6 ppm and 61.4, 65.4 ppm for period of 33 to 36 wk, and 63.3, 53.1 and 60.4, 46.1 ppm for period of 37 to 40 wk, and 62.8, 52.8, and 67.7, 62.1 ppm for period of 41 to 44 wk, respectively, using BLQ and EA models. Total eggs and total settable eggs produced per hen had Zn requirements estimated as 75.7, 64.7 ppm, and 56.5, 41.5 ppm, respectively, for BLQ and EA models, whereas for alkaline phosphatase and eggshell percentage were 161.8, 124.9 ppm and 126.1, 122.4 ppm, using QP and BLQ models. Maximum responses for Zn in yolk for periods of 37 to 40 and 41 to 44 wk were 71.0, 78.1 and 64.5, 59.6 ppm, respectively, using BLQ and EA models. Breaking strength had Zn requirements estimated at 68.0 and 96.7 ppm, whereas eggshell palisade layer and eggshell thickness were maximized with 67.9, 67.9 ppm, and 67.7, 64.4 ppm, respectively, for BLQ and EA models. The average of all Zn requirement estimates obtained by EA and BLQ models in the present study was 72.28 ppm or 11.1 mg/hen/d.


Subject(s)
Animal Feed/analysis , Chickens/physiology , Reproduction/drug effects , Zinc/metabolism , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Egg Shell/drug effects , Egg Yolk/chemistry , Female , Oviposition
3.
West Indian med. j ; 12(2): 140, June 1963.
Article in English | MedCarib | ID: med-7452

ABSTRACT

An extensive study of 3 isolated communities (1,700 persons) in Puerto Rico was presented (AU)


Subject(s)
Humans , Child , Child Nutrition , Rural Population , Hispanic or Latino
SELECTION OF CITATIONS
SEARCH DETAIL