Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38791274

ABSTRACT

Numerous animal models have demonstrated that caloric restriction (CR) is an excellent tool to delay aging and increase the quality of life, likely because it counteracts age-induced oxidative stress and inflammation. The aging process can affect the prostate in three ways: the onset of benign prostatic hyperplasia, prostatitis, and prostate cancer. In this study, we used 14 aged male Sprague Dawley rats, which were allocated into two groups, at the age of 18 months old. One group was fed ad libitum (a normal diet (ND)), and the other group followed a caloric restriction diet with a 60% decrease in intake. The rats were sacrificed at the age of 24 months. By immunohistochemical (IHC) and Western blot (WB) analyses, we studied the variations between the two groups in immune inflammation and fibrosis-related markers in aged prostate tissues. Morphological examinations showed lower levels of prostatic hyperplasia and fibrosis in the CR rats vs. the ND rats. The IHC results revealed that the prostates of the CR rats exhibited a lower immune proinflammatory infiltrate level and a reduced expression of the NLRP3 inflammasome pathway, together with significantly reduced expressions of mesenchymal markers and the profibrotic factor TGFß1. Finally, by WB analysis, we observed a reduced expression of ERα, which is notoriously implicated in prostate stromal proliferation, and increased expressions of SOD1 and Hsp70, both exerting protective effects against oxidative stress. Overall, these data suggest that CR brings potential benefits to prostatic tissues as it reduces the physiological immune-inflammatory processes and the tissue remodeling caused by aging.


Subject(s)
Aging , Caloric Restriction , Inflammation , NLR Family, Pyrin Domain-Containing 3 Protein , Prostate , Rats, Sprague-Dawley , Animals , Male , Caloric Restriction/methods , Rats , Prostate/metabolism , Prostate/pathology , Aging/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammation/metabolism , Inflammation/pathology , Transforming Growth Factor beta1/metabolism , Inflammasomes/metabolism , Prostatic Hyperplasia/metabolism , Prostatic Hyperplasia/pathology , Oxidative Stress , Fibrosis , Superoxide Dismutase-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...