Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
Add more filters











Publication year range
1.
J Sci Food Agric ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39205514

ABSTRACT

BACKGROUND: This study systematically designed and optimised a transniosomal formulation containing embelin for skin cancer management. The transniosomes were developed using a rotary evaporation method and then optimised using a Box-Behnken design. RESULTS: The optimized embelin-loaded transniosomes (Opt-EMB-TNs) exhibited a vesicle size of 149.01 nm, polydispersity index of 0.184, a zeta potential of -21.14 mV, an entrapment efficiency of 75.6 ± 0.65%, drug loading of 3.36 ± 0.03% and drug release of 80.88 ± 2.55%. The antioxidant potential of Opt-EMB-TNs was found to be 88.54% when compared to standard ascorbic acid. Dermatokinetic studies showed a greater drug deposition in targeted skin areas with Opt-EMB-TN gel compared to the embelin conventional gel (EMB-CF gel). In addition, the penetration depth study of the skin sample revealed that the transniosomal gel containing rhodamine B dye exhibited higher penetration than that of the rhodamine B dye containing hydroalcoholic solution. The efficacy of Opt-EMB-TNs for skin cancer was confirmed by cytotoxicity assay against the B16F10 melanoma cell line. CONCLUSION: The study concluded that the Opt-EMB-TN gel formulation is a promising and effective topical treatment for skin cancer, demonstrating significant potential for further development and clinical application. © 2024 Society of Chemical Industry.

2.
3 Biotech ; 14(9): 208, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39184911

ABSTRACT

Asthma is a chronic inflammatory condition that affects the airways, posing a substantial health threat to a large number of people worldwide. Bronchodilators effectively alleviate symptoms of airway obstruction by inducing relaxation of the smooth muscles in the airways, thereby reducing breathlessness and enhancing overall quality of life. The drug targeting to lungs poses significant challenges; however, this issue can be resolved by employing nano- and micro-particles drug delivery systems. This review provides brief insights about underlying mechanisms of asthma, including the role of several inflammatory mediators that contribute to the development and progression of this disease. This article provides an overview of the physicochemical features, pharmacokinetics, and mechanism of action of particular groups of bronchodilators, including sympathomimetics, PDE-4 inhibitors (phosphodiesterase-4 inhibitors), methylxanthines, and anticholinergics. This study presents a detailed summary of the most recent developments in incorporation of bronchodilators in nano- and micro-particle-based delivery systems which include solid lipid nanoparticles, bilosomes, novasomes, liposomes, polymeric nano- and micro-particles. Specifically, it focuses on breakthroughs in the categories of sympathomimetics, methylxanthines, PDE-4 inhibitors, and anticholinergics. These medications have the ability to specifically target alveolar macrophages, leading to a higher concentration of pharmaceuticals in the lung tissues.

3.
Heliyon ; 10(15): e35336, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39170494

ABSTRACT

Gastrointestinal (GI) cancers represent a significant global health challenge, driving relentless efforts to identify innovative diagnostic and therapeutic approaches. Recent strides in microbiome research have unveiled a previously underestimated dimension of cancer progression that revolves around the intricate metabolic interplay between GI cancers and the host's gut microbiota. This review aims to provide a comprehensive overview of these emerging metabolic interactions and their potential to catalyze a paradigm shift in precision diagnosis and therapeutic breakthroughs in GI cancers. The article underscores the groundbreaking impact of microbiome research on oncology by delving into the symbiotic connection between host metabolism and the gut microbiota. It offers valuable insights into tailoring treatment strategies to individual patients, thus moving beyond the traditional one-size-fits-all approach. This review also sheds light on novel diagnostic methodologies that could transform the early detection of GI cancers, potentially leading to more favorable patient outcomes. In conclusion, exploring the metabolic interactions between host gut microbiota and GI cancers showcases a promising frontier in the ongoing battle against these formidable diseases. By comprehending and harnessing the microbiome's influence, the future of precision diagnosis and therapeutic innovation for GI cancers appears more optimistic, opening doors to tailored treatments and enhanced diagnostic precision.

4.
RSC Adv ; 14(33): 23785-23795, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39077323

ABSTRACT

In both premenopausal and postmenopausal women, oestrogens play a critical role in the development of breast cancer. Aromatase is an enzyme that catalyses the final step in the biosynthesis of estrogen and has emerged as a promising target for therapeutic intervention. This study aimed to design and evaluate novel 1-(4-(benzamido)phenyl)-3-arylurea derivatives as potential aromatase inhibitors. Through molecular docking, promising leads were identified and synthesized. Spectroscopic techniques confirmed their structural integrity. Cytotoxicity against various cancer cell lines was assessed using MTT assay. Docking investigations against the aromatase enzyme (3s7s) elucidated binding interactions and energies. Compound 6g, exhibiting a binding energy of -8.6 kcal mol-1 and interacting with ALA306 and THR310 residues, showed the most promising activity. It demonstrated GI50 values ranging from 14.46 µM, 13.97 µM, 11.35 µM, 11.58 µM, and 15.77 µM against A-498, NCI-H23, MDAMB-231, MCF-7, and A-549 respectively. Lastly, the physicochemical, and ADMET properties of the compound were predicted. These findings highlight the potential of 1-(4-(benzamido)phenyl)-3-arylureas as a new class of antitumor agents targeting aromatase. Their versatility and superior activity compared to standard chemotherapeutic agents, like doxorubicin, warrant further investigation for the development of broader-spectrum anticancer drugs.

5.
Biomed Mater ; 19(5)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38955335

ABSTRACT

This study aimed to develop and optimize karanjin-loaded ethosomal nanogel formulation and evaluate its efficacy in alleviating symptoms of psoriasis in an animal model induced by imiquimod. These karanjin-loaded ethosomal nanogel, were formulated to enhance drug penetration into the skin and its epidermal retention. Karanjin was taken to formulate ethosomes due to its potential ani-psoriatic activity. Ethosomes were formulated using the cold method using 32full factorial designs to optimize the formulation components. 9 batches were prepared using two independent variablesX1: concentration of ethanol andX2: concentration of phospholipid whereas vesicle size (Y1) and percentage entrapment efficiency (Y2) were selected as dependent variables. All the dependent variables were found to be statistically significant. The optimized ethosomal suspension (B3) exhibited a vesicle size of 334 ± 2.89 nm with an entrapment efficiency of 94.88 ± 1.24% and showed good stability. The morphology of vesicles appeared spherical with smooth surfaces through transmission electron microscopy analysis. X-ray diffraction analysis confirmed that the drug existed in an amorphous state within the ethosomal formulation. The optimized ethosome was incorporated into carbopol 934 to develop nanogel for easy application on the skin. The nanogel underwent characterization for various parameters including spreadability, viscosity, pH, extrudability, and percentage drug content. The ethosomal formulation remarkably enhanced the skin permeation of karanjin and increased epidermal retention of the drug in psoriatic skin compared to marketed preparation and pure drug. A skin retention study showed that ethosomal nanogel formulation has 48.33% epidermal retention in 6 h.In vivo,the anti-psoriatic activity of karanjin ethosomal nanogel demonstrated significant improvement in psoriasis, indicated by a gradual decrease in skin thickness and scaling as reflected in the Psoriasis Severity Index grading. Therefore, the prepared ethosomal nanogel is a potential vehicle for improved topical delivery of karanjin for better treatment of psoriasis.


Subject(s)
Nanogels , Psoriasis , Skin Absorption , Psoriasis/drug therapy , Psoriasis/pathology , Animals , Nanogels/chemistry , Lecithins/chemistry , Skin/metabolism , Skin/pathology , Particle Size , Liposomes/chemistry , Polyethylene Glycols/chemistry , Glycine max/chemistry , Rats , Male , Imiquimod/chemistry , Drug Carriers/chemistry , Polyethyleneimine/chemistry , X-Ray Diffraction , Ethanol/chemistry , Acrylates
6.
Curr Pharm Des ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38877861

ABSTRACT

INTRODUCTION: The COVID-19 pandemic represents a significant challenge across scientific, medical, and societal dimensions. The unpredictability of the disease progression, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), underscores the urgent need for identifying compounds that target multiple aspects of the virus to ensure swift and effective treatment. Nyctanthes arbortristis L., a delicate, perennial, deciduous shrub found across various Asian regions, has been recognized for its wide range of pharmacological benefits, including hepatoprotective, antimalarial, antibacterial, anti-inflammatory, antioxidant, and antiviral properties. METHODS: Various in vitro studies revealed the therapeutic significance of Nyctanthes arbortristis against COVID-19. However, the exact molecular mechanism remains unclarified. In the present study, a network pharmacology approach was employed to uncover the active ingredients, their potential targets, and signaling pathways in Nyctanthes arbortristis for the treatment of COVID-19. In the framework of this study, we explored the active ingredient-target-pathway network and figured out that naringetol, ursolic acid, betasitosterol, and daucosterol decisively contributed to the development of COVID-19 by affecting IL6, MAPK3, and MDM2 genes. RESULTS: The results of molecular docking analysis indicated that Nyctanthes arbortristis exerted effective binding capacity in COVID-19. Further, we disclosed the targets, biological functions, and signaling pathways of Nyctanthes arbortristis in COVID-19. The analysis indicated that Nyctanthes arbortristis could help treat COVID-19 through the enhancement of immunologic functions, inhibition of inflammatory reactions and regulation of the cellular microenvironment. In short, the current study used a series of network pharmacologybased and computational analyses to understand and characterize the binding capacity, biological functions, pharmacological targets and therapeutic mechanisms of Nyctanthes arbortristis in COVID-19. CONCLUSION: However, the findings were not validated in actual COVID-19 patients, so further investigation is needed to confirm the potential use of Nyctanthes arbortristis for treating COVID-19.

7.
Front Cell Dev Biol ; 12: 1353860, 2024.
Article in English | MEDLINE | ID: mdl-38601081

ABSTRACT

Neuroblastoma (NB) is the most frequent solid tumor in pediatric cases, contributing to around 15% of childhood cancer-related deaths. The wide-ranging genetic, morphological, and clinical diversity within NB complicates the success of current treatment methods. Acquiring an in-depth understanding of genetic alterations implicated in the development of NB is essential for creating safer and more efficient therapies for this severe condition. Several molecular signatures are being studied as potential targets for developing new treatments for NB patients. In this article, we have examined the molecular factors and genetic irregularities, including those within insulin gene enhancer binding protein 1 (ISL1), dihydropyrimidinase-like 3 (DPYSL3), receptor tyrosine kinase-like orphan receptor 1 (ROR1) and murine double minute 2-tumor protein 53 (MDM2-P53) that play an essential role in the development of NB. A thorough summary of the molecular targeted treatments currently being studied in pre-clinical and clinical trials has been described. Recent studies of immunotherapeutic agents used in NB are also studied in this article. Moreover, we explore potential future directions to discover new targets and treatments to enhance existing therapies and ultimately improve treatment outcomes and survival rates for NB patients.

8.
ACS Omega ; 9(14): 16346-16357, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617636

ABSTRACT

This research work aimed to develop and evaluate proniosomes for the oral delivery of the lipophilic drug Irbesartan (IRB) to improve its solubility and bioavailability. Proniosomes of Irbesartan were formulated using a lipid, surfactant, and carrier by a slurry method. Based on the prepared preliminary trial batches and their evaluation, the formulation was optimized by employing a Box-Behnken design (BBD) in which concentrations of span 60 (X1), cholesterol (X2), and mannitol (X3) were used as three independent variables and the vesicular size (VS) (Y1), % entrapment efficiency (% EE) (Y2), and % cumulative drug release (% CDR) (Y3) were used as dependent variables. The optimized batch B1 was obtained from the BBD experiment after validation of checkpoint analysis, and their characterization was done for VS, % EE, % CDR, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) analysis. The optimized batch showed a VS of 199 ± 5.4 nm, a % EE of 99.25 ± 2.24%, and a % CDR of 97.36 ± 1.13% at 24 h. Scanning electron microscopy (SEM) study showed a smooth surface of batch B1. DSC and XRD studies indicated the amorphous nature of the proniosomal formulation. The proniosomal formulation showed increased solubility (2.65 ± 0.2 mg/mL) in phosphate buffer, pH 6.8, as compared to water (0.059 ± 0.02 mg/mL). The pharmacokinetic study in rats confirmed the increased bioavailability of the drug in optimized proniosomal formulation compared with its pure drug suspension. Cmax, Tmax, and AUC0-t of the drug also increased by 2-fold compared to those of drug suspension. Thus, in conclusion, the proniosomal formulation proved to be an efficient carrier for improved oral delivery of Irbesartan by improving the solubility and bioavailability of the drug.

9.
Int J Nanomedicine ; 19: 3461-3473, 2024.
Article in English | MEDLINE | ID: mdl-38617799

ABSTRACT

Purpose: Ivosidenib (IVO), an isocitrate dehydrogenase-1 (IDH1) used for treatment of acute myeloid leukemia (AML) and cholangiocarcinoma. However, poor solubility, low bioavailability, high dose and side effects limit clinical application of IVO. Methods: Ivosidenib-loaded PLGA nanoparticles (IVO-PLGA-NPs) and Ivosidenib-loaded chitosan coated PLGA nanoparticles (IVO-CS-PLGA-NPs) were prepared using emulsification and solvent evaporation method for the treatment of liver cancer. Results: The developed IVO-PLGA-NPs were evaluated for their particle size (171.7±4.9 nm), PDI (0.333), ZP (-23.0±5.8 mV), EE (96.3±4.3%), and DL (9.66±1.1%); similarly, the IVO-CS-PLGA-NPs were evaluated for their particle size (177.3±5.2 nm), PDI (0.311), ZP +25.9±5.7 mV, EE (90.8±5.7%), and DL (9.42±0.7%). The chitosan coating of IVO-PLGA-NPs was evidenced by an increase in mean particle size and positive ZP value. Because of the chitosan coating, the IVO-CS-PLGA-NPs showed a more stable and prolonged release of IVO than IVO-PLGA-NPs. In comparison to pure-IVO, the IVO-PLGA-NPs and IVO-CS-PLGA-NPs were found to be more effective against HepG2 cells, with IC50 values for the MTT assay being approximately half of those of pure-IVO. In HepG2 cells, the expressions of caspase-3, caspase-9, and p53 were significantly (p < 0.05) elevated. Conclusion: Overall, these findings suggest that chitosan coating of IVO-PLGA-NPs improves the delivery and efficacy of ivosidenib in liver cancer treatment.


Subject(s)
Bile Duct Neoplasms , Chitosan , Glycine/analogs & derivatives , Liver Neoplasms , Nanoparticles , Pyridines , Humans , Liver Neoplasms/drug therapy , Bile Ducts, Intrahepatic
10.
Phytomedicine ; 127: 155466, 2024 May.
Article in English | MEDLINE | ID: mdl-38461764

ABSTRACT

BACKGROUND: The heme oxygenase (HO) system plays a significant role in neuroprotection and reduction of neuroinflammation and neurodegeneration. The system, via isoforms HO-1 and HO-2, regulates cellular redox balance. HO-1, an antioxidant defense enzyme, is highlighted due to its association with depression, characterized by heightened neuroinflammation and impaired oxidative stress responses. METHODOLOGY: We observed the pathophysiology of HO-1 and phytochemicals as its modulator. We explored Science Direct, Scopus, and PubMed for a comprehensive literature review. Bibliometric and temporal trend analysis were done using VOSviewer. RESULTS: Several phytochemicals can potentially alleviate neuroinflammation and oxidative stress-induced depressive symptoms. These effects result from inhibiting the MAPK and NK-κB pathways - both implicated in the overproduction of pro-inflammatory factors - and from the upregulation of HO-1 expression mediated by Nrf2. Bibliometric and temporal trend analysis further validates these associations. CONCLUSION: In summary, our findings suggest that antidepressant agents can mitigate neuroinflammation and depressive disorder pathogenesis via the upregulation of HO-1 expression. These agents suppress pro-inflammatory mediators and depressive-like symptoms, demonstrating that HO-1 plays a significant role in the neuroinflammatory process and the development of depression.


Subject(s)
Heme Oxygenase-1 , Neuroinflammatory Diseases , Humans , Heme Oxygenase-1/metabolism , Depression/drug therapy , Heme Oxygenase (Decyclizing)/metabolism , Antioxidants/pharmacology , Oxidative Stress , NF-E2-Related Factor 2/metabolism
11.
ACS Omega ; 9(9): 10030-10048, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38463249

ABSTRACT

Skin cancer (SC) poses a global threat to the healthcare system and is expected to increase significantly over the next two decades if not diagnosed at an early stage. Early diagnosis is crucial for successful treatment, as the disease becomes more challenging to cure as it progresses. However, identifying new drugs, achieving clinical success, and overcoming drug resistance remain significant challenges. To overcome these obstacles and provide effective treatment, it is crucial to understand the causes of skin cancer, how cells grow and divide, factors that affect cell growth, and how drug resistance occurs. In this review, we have explained various therapeutic approaches for SC treatment via ligands, targeted photosensitizers, natural and synthetic drugs for the treatment of SC, an epigenetic approach for management of melanoma, photodynamic therapy, and targeted therapy for BRAF-mutated melanoma. This article also provides a detailed summary of the various natural drugs that are effective in managing melanoma and reducing the occurrence of skin cancer at early stages and focuses on the current status and future prospects of various therapies available for the management of skin cancer.

12.
Expert Opin Drug Metab Toxicol ; 20(4): 181-195, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38480460

ABSTRACT

INTRODUCTION: Pharmacokinetic parameters assessment is a critical aspect of drug discovery and development, yet challenges persist due to limited training data. Despite advancements in machine learning and in-silico predictions, scarcity of data hampers accurate prediction of drug candidates' pharmacokinetic properties. AREAS COVERED: The study highlights current developments in human pharmacokinetic prediction, talks about attempts to apply synthetic approaches for molecular design, and searches several databases, including Scopus, PubMed, Web of Science, and Google Scholar. The article stresses importance of rigorous analysis of machine learning model performance in assessing progress and explores molecular modeling (MM) techniques, descriptors, and mathematical approaches. Transitioning to clinical drug development, article highlights AI (Artificial Intelligence) based computer models optimizing trial design, patient selection, dosing strategies, and biomarker identification. In-silico models, including molecular interactomes and virtual patients, predict drug performance across diverse profiles, underlining the need to align model results with clinical studies for reliability. Specialized training for human specialists in navigating predictive models is deemed critical. Pharmacogenomics, integral to personalized medicine, utilizes predictive modeling to anticipate patient responses, contributing to more efficient healthcare system. Challenges in realizing potential of predictive modeling, including ethical considerations and data privacy concerns, are acknowledged. EXPERT OPINION: AI models are crucial in drug development, optimizing trials, patient selection, dosing, and biomarker identification and hold promise for streamlining clinical investigations.


Subject(s)
Artificial Intelligence , Computer Simulation , Drug Development , Machine Learning , Pharmacokinetics , Precision Medicine , Humans , Drug Design , Drug Development/methods , Drug Discovery/methods , Models, Biological , Models, Molecular , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/administration & dosage , Pharmacogenetics , Precision Medicine/methods , Reproducibility of Results
13.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38399463

ABSTRACT

Disease-modifying anti-rheumatic drugs (DMARDs) is a class of anti-rheumatic medicines that are frequently prescribed to patients suffering from rheumatoid arthritis (RA). Methotrexate, sulfasalazine, hydroxychloroquine, and azathioprine are examples of non-biologic DMARDs that are being used for alleviating pain and preventing disease progression. Biologic DMARDs (bDMARDs) like infliximab, rituximab, etanercept, adalimumab, tocilizumab, certolizumab pegol, and abatacept have greater effectiveness with fewer adverse effects in comparison to non-biologic DMARDs. This review article delineates the classification of DMARDs and their characteristic attributes. The poor aqueous solubility or permeability causes the limited oral bioavailability of synthetic DMARDs, while the high molecular weights along with the bulky structures of bDMARDs have posed few obstacles in their drug delivery and need to be addressed through the development of nanoformulations like cubosomes, nanospheres, nanoemulsions, solid lipid nanoparticles, nanomicelles, liposome, niosomes, and nanostructured lipid carrier. The main focus of this review article is to highlight the potential role of nanotechnology in the drug delivery of DMARDs for increasing solubility, dissolution, and bioavailability for the improved management of RA. This article also focusses on the different aspects of nanoparticles like their applications in biologics, biocompatibility, body clearance, scalability, drug loading, and stability issues.

14.
Food Sci Nutr ; 12(2): 1056-1066, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370062

ABSTRACT

Boswellia sacra and its derivatives exhibit notable bioactive properties, which have been the subject of extensive scientific research; however, their potential applications in food packaging remain largely untapped. In the current study, cellulose, sodium alginate, and gelatin composite edible films were fabricated with the addition of different concentrations (0.2% and 0.3%) of the ethanolic fraction of Boswellia sacra oleo gum resin (BSOR). The resultant films were examined for their physical, chemical, mechanical, barrier, optical, and antioxidant properties. Moreover, the films were characterized using Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) to study the impact of incorporating BSOR on the morphological, crystalline, and chemical properties of the films. The addition of BSOR increased the film thickness (0.026-0.08 mm), water vapor permeability (0.210-0.619 (g.mm)/(m2.h.kPa), and the intensity of the yellow color (3.01-7.20) while reducing the values of both tensile strength (6.67-1.03 MPa) and elongation at break (83.50%-48.81%). SEM and FTIR analysis confirmed the interaction between the BSOR and film-forming components. The antioxidant properties of the edible films were significantly increased with the addition of BSOR. The comprehensive findings of the study demonstrated that BSOR possesses the potential to serve as an efficient natural antioxidant agent in the fabrication of edible films.

15.
Heliyon ; 10(2): e24210, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38304764

ABSTRACT

Plasticizers are employed to stabilize films by safeguarding their physical stability and avoiding the degradation of the loaded therapeutic drug during processing and storage. In the present study, the plasticizer effect (glycerol) was studied on bioadhesive films based on sodium alginate (SA), carboxymethyl cellulose (CMC) and gelatin (GE) polymers loaded with amphotericin B (AmB). The main objective of the current study was to assess the morphological, mechanical, thermal, optical, and barrier properties of the films as a function of glycerol (Gly) concentration (0.5-1.5 %) using different techniques such as Scanning Electron Microscope (SEM), Texture analyzer (TA), Differential Scanning Calorimeter (DSC), X-Ray Diffraction (XRD), and Fourier Transforms Infrared Spectroscopy (FTIR). The concentration increase of glycerol resulted in an increase in Water Vapor Permeability (WVP) (0.187-0.334), elongation at break (EAB) (0.88-35.48 %), thickness (0.032-0.065 mm) and moisture level (17.5-41.76 %) whereas opacity, tensile strength (TS) (16.81-0.86 MPa), and young's modulus (YM) (0.194-0.002 MPa) values decreased. Glycerol incorporation in the film-Forming solution decreased the brittleness and fragility of the films. Fourier Transform Infrared (FTIR) spectra showed that intermolecular hydrogen bonding occurred between glycerol and polymers in plasticized films compared to control films. Furthermore, molecular docking was applied to predict the binding interactions betweem AmB, CMC, gelatin, SA and glycerol, which further endorsed the stabilizing effects of glycerol in the complex formation between AmB, CMC, SA, and gelatin. The Findings of the current study demonstrated that this polymeric blend could be used to successfully prepare bioadhesive films with glycerol as a plasticizer.

16.
ACS Omega ; 9(7): 8139-8150, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405505

ABSTRACT

Tenofovir (TNF) is a common component of many antiretroviral therapy regimens, but it is associated with poor membrane permeability and low oral bioavailability. To improve its oral bioavailability and membrane permeability, a self-emulsifying drug delivery system (SEDDS) was developed and characterized, and its relative bioavailability was compared to the marketed tablets (Tenof). Based on solubility and ternary phase diagram analysis, eucalyptus oil was selected as an oil phase, Kolliphor EL, and Kollisolv MCT 70 were chosen as surfactant and cosurfactant, respectively, while glycerol was used as cosolvent in surfactant mixture. Optimized SEDDS formulation F6 showed an oil droplet size of 98.82 nm and zeta potential of -13.03 mV, indicating the high stability of oil droplets. Differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy characterization studies were also carried out to assess the amorphous and morphological states of the drug in the prepared SEDDS formulation. The in vitro dissolution profile of SEDDS shows the rapid release of the drug. SEDDS F6 demonstrates a higher drug permeability than the plain TNF and TNF-marketed tablets (Tenof). A pharmacokinetic study in rats revealed that SEDDS F6 showed significantly higher Cmax and AUC0-t than the marketed tablets and pure drug suspension. In addition, the relative bioavailability of SEDDS formulation dramatically improved by 21.53-fold compared to marketed tablets and 66.27-fold compared to pure drugs. These findings show that SEDDS composed of eucalyptus oil, glycerol, Kolliphor EL, and Kollisolv MCT 70 could be a useful tool for enhancing physiochemical properties and oral TNF absorption. Therefore, SEDDS has shown promise in improving the oral bioavailability of poorly water-soluble drugs.

17.
Diagnostics (Basel) ; 14(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38248016

ABSTRACT

To develop diagnostic imaging approaches, this paper emphasizes the transformational potential of merging geophysics with health sciences. Diagnostic imaging technology improvements have transformed the health sciences by enabling earlier and more precise disease identification, individualized therapy, and improved patient care. This review article examines the connection between geophysics and diagnostic imaging in the field of health sciences. Geophysics, which is typically used to explore Earth's subsurface, has provided new uses of its methodology in the medical field, providing innovative solutions to pressing medical problems. The article examines the different geophysical techniques like electrical imaging, seismic imaging, and geophysics and their corresponding imaging techniques used in health sciences like tomography, magnetic resonance imaging, ultrasound imaging, etc. The examination includes the description, similarities, differences, and challenges associated with these techniques and how modified geophysical techniques can be used in imaging methods in health sciences. Examining the progression of each method from geophysics to medical imaging and its contributions to illness diagnosis, treatment planning, and monitoring are highlighted. Also, the utilization of geophysical data analysis techniques like signal processing and inversion techniques in image processing in health sciences has been briefly explained, along with different mathematical and computational tools in geophysics and how they can be implemented for image processing in health sciences. The key findings include the development of machine learning and artificial intelligence in geophysics-driven medical imaging, demonstrating the revolutionary effects of data-driven methods on precision, speed, and predictive modeling.

18.
Biomedicines ; 11(12)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38137562

ABSTRACT

This study aimed to prepare glycyrrhizin-apigenin spray-dried solid dispersions and develop PVA filament-based 3D printlets to enhance the dissolution and therapeutic effects of apigenin (APN); three formulations (APN1-APN3) were proportioned from 1:1 to 1:3. A physicochemical analysis was conducted, which revealed process yields of 80.5-91% and APN content within 98.0-102.0%. FTIR spectroscopy confirmed the structural preservation of APN, while Powder-XRD analysis and Differential Scanning Calorimetry indicated its transformation from a crystalline to an amorphous form. APN2 exhibited improved flow properties, a lower Angle of Repose, and Carr's Index, enhancing compressibility, with the Hausner Ratio confirming favorable flow properties for pharmaceutical applications. In vitro dissolution studies demonstrated superior performance with APN2, releasing up to 94.65% of the drug and revealing controlled release mechanisms with a lower mean dissolution time of 71.80 min and a higher dissolution efficiency of 19.2% compared to the marketed APN formulation. This signified enhanced dissolution and improved therapeutic onset. APN2 exhibited enhanced antioxidant activity; superior cytotoxicity against colon cancer cells (HCT-116), with a lower IC50 than APN pure; and increased antimicrobial activity. A stability study confirmed the consistency of APN2 after 90 days, as per ICH, with an f2 value of 70.59 for both test and reference formulations, ensuring reliable pharmaceutical development. This research underscores the potential of glycyrrhizin-apigenin solid dispersions for pharmaceutical and therapeutic applications, particularly highlighting the superior physicochemical properties, dissolution behavior, biological activities, and stability of APN2, while the development of a 3D printlet shell offers promise for enhanced drug delivery and therapeutic outcomes in colon cancer treatment, displaying advanced formulation and processing techniques.

19.
Front Pharmacol ; 14: 1285258, 2023.
Article in English | MEDLINE | ID: mdl-37964873

ABSTRACT

Ovarian cancer is a malignant tumor that primarily forms in the ovaries. It often goes undetected until it has spread to the pelvis and abdomen, making it more challenging to treat and often fatal. Historically, natural products and their structural analogues have played a pivotal role in pharmacotherapy, especially for cancer. Numerous studies have demonstrated the therapeutic potential of Linum usitatissimum against ovarian cancer, but the specific molecular mechanisms remain elusive. This study combines data mining, network pharmacology, and molecular docking analysis to pioneer an innovative approach for ovarian cancer treatment by identifying potent phytochemicals. Findings of current study revealed that Apigenin, Vitamin E, Palmitic acid, Riboflavin, Isolariciresinol, 5-Dehydro-avenasterol, Cholesterol, Pantothenic acid, Nicotinic acid, Campesterol, Beta-Sitosterol, Stigmasterol, Daucosterol, and Vitexin suppress tumor growth by influencing AKT1, JUN, EGFR, and VEGFA. Kaplan-Meier survival analysis spotlighted AKT1, JUN, EGFR, and VEGFA as potential diagnostic and prognostic biomarkers for ovarian cancer. However, it is imperative to conduct in vivo and in vitro examinations to ascertain the pharmacokinetics and biosafety profiles, bolstering the candidacy of L. usitatissimum in ovarian cancer therapeutics.

20.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-38004415

ABSTRACT

In the current study, the toxic effects of gefitinib-loaded solid lipid nanoparticles (GFT-loaded SLNs) upon human breast cancer cell lines (MCF-7) were investigated. GFT-loaded SLNs were prepared through a single emulsification-evaporation technique using glyceryl tristearate (Dynasan™ 114) along with lipoid® 90H (lipid surfactant) and Kolliphore® 188 (water-soluble surfactant). Four formulae were developed by varying the weight of the lipoid™ 90H (100-250 mg), and the GFT-loaded SLN (F4) formulation was optimized in terms of particle size (472 ± 7.5 nm), PDI (0.249), ZP (-15.2 ± 2.3), and EE (83.18 ± 4.7%). The optimized formulation was further subjected for in vitro release, stability studies, and MTT assay against MCF-7 cell lines. GFT from SLNs exhibited sustained release of the drug for 48 h, and release kinetics followed the Korsmeyer-Peppas model, which indicates the mechanism of drug release by swelling and/or erosion from a lipid matrix. When pure GFT and GFT-SLNs were exposed to MCF-7 cells, the activities of p53 (3.4 and 3.7 times), caspase-3 (5.61 and 7.7 times), and caspase-9 (1.48 and 1.69 times) were enhanced, respectively, over those in control cells. The results suggest that GFT-loaded SLNs (F4) may represent a promising therapeutic alternative for breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL