Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Microbiota Food Health ; 43(3): 170-182, 2024.
Article in English | MEDLINE | ID: mdl-38966051

ABSTRACT

Cumulative evidence suggests that intermittent fasting (IF) has beneficial effects on human metabolic health. It has been indicated that its impact on the gut microbiota may mediate these beneficial effects. As a result, we hypothesized that IF may impact the human gut microbiota. A systematic review was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol using the PubMed, Scopus, and CINAHL databases. We registered our systematic review protocol in PROSPERO under registration number CRD42021270050. Human intervention studies published until April 30, 2023, were included. The quality of the included studies was assessed using National Institutes of Health (NIH) quality assessment study tools for intervention studies. The search in the database returned 166 studies, of which 13 matched all criteria for the final qualitative analysis. The body of evidence suggests that IF modulates human gut microbiota alpha and beta diversity in lean (relatively healthy) and relatively healthy overweight/obese individuals but not in individuals with metabolic syndrome. Furthermore, IF also alters human gut microbiota composition in all phenotypes. Of interest, the gut microbiota taxa or microbial metabolites after an IF intervention are associated with metabolic markers. According to this review, IF influences the diversity and taxonomic levels of the human gut microbiota. Individual metabolic phenotypes may alter the effect of IF on the diversity and taxonomic levels of the gut microbiota.

2.
Front Nutr ; 9: 1010867, 2022.
Article in English | MEDLINE | ID: mdl-36185651

ABSTRACT

Dietary modification, including functional foods, could reduce comorbidities due to obesity. An increase in serum glucose and lipids is often seen in obesity. Furthermore, obesity is also characterized by a decrease in antioxidant capacity (i.e., decrease in superoxide dismutase/SOD) and downregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). It has been well established that PGC-1α is important to regulate mitochondrial biogenesis. Sea grapes (Caulerpa lentillifera) are known as a traditional food in many Asia-Pacific countries. Recent evidence suggests that sea grapes have many beneficial properties as functional foods and may have potential therapeutic functions. We investigated the effect of sea grapes (C. lentillifera) on serum glucose, lipids, PGC-1α, and protein levels of SOD in the liver of Rattus norvegicus, which is induced with a high-fat and high-cholesterol diet. A total of four groups were made, each containing ten male Rattus norvegicus; group A received a standard dry pellet diet as control, group B received cholesterol- and fat-enriched diets (CFED), groups C and D received CFED and 150 and 450 mg/kg body weight (BW) of sea grape extract, respectively, for 4 weeks. Serum glucose and cholesterol were assessed using a blood auto-analyzer. Serum PGC-1α was measured using ELISA. SOD levels were calculated using the superoxide dismutase assay kit by Sigma-Aldrich with blood taken from liver tissue. In this study, sea grape extracts improved total cholesterol levels better than the CFED and normal groups. The efficacy of total cholesterol improvement was similar between the two doses of sea grape extract. Furthermore, sea grape extract increased PCG-1α levels, especially with the dose of 150 mg/kg BW. Blood glucose was also lower in the groups of sea grape extract. Interestingly, the groups treated with sea grapes extract exhibited higher levels of liver SOD compared to the normal and CFED groups. To conclude, sea grapes (C. lentillifera) have promising potential for anti-hyperglycemia and anti-hypercholesterolemia, and for reducing oxidative stress, and providing various health benefits for metabolic disorders.

SELECTION OF CITATIONS
SEARCH DETAIL