Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Geroscience ; 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38558215

Down syndrome (DS) is a genetic condition where the person is born with an extra chromosome 21. DS is associated with accelerated aging; people with DS are prone to age-related neurological conditions including an early-onset Alzheimer's disease. Using the Dp(17)3Yey/ + mice, which overexpresses a portion of mouse chromosome 17, which encodes for the transsulfuration enzyme cystathionine ß-synthase (CBS), we investigated the functional role of the CBS/hydrogen sulfide (H2S) pathway in the pathogenesis of neurobehavioral dysfunction in DS. The data demonstrate that CBS is higher in the brain of the DS mice than in the brain of wild-type mice, with primary localization in astrocytes. DS mice exhibited impaired recognition memory and spatial learning, loss of synaptosomal function, endoplasmic reticulum stress, and autophagy. Treatment of mice with aminooxyacetate, a prototypical CBS inhibitor, improved neurobehavioral function, reduced the degree of reactive gliosis in the DS brain, increased the ability of the synaptosomes to generate ATP, and reduced endoplasmic reticulum stress. H2S levels in the brain of DS mice were higher than in wild-type mice, but, unexpectedly, protein persulfidation was decreased. Many of the above alterations were more pronounced in the female DS mice. There was a significant dysregulation of metabolism in the brain of DS mice, which affected amino acid, carbohydrate, lipid, endocannabinoid, and nucleotide metabolites; some of these alterations were reversed by treatment of the mice with the CBS inhibitor. Thus, the CBS/H2S pathway contributes to the pathogenesis of neurological dysfunction in DS in the current animal model.

2.
Antioxidants (Basel) ; 12(3)2023 Mar 05.
Article En | MEDLINE | ID: mdl-36978895

Cystathionine ß-synthase (CBS), CSE (cystathionine γ-lyase) and 3-mercaptopyruvate sulfurtransferase (3-MST) have emerged as three significant sources of hydrogen sulfide (H2S) in various forms of mammalian cancer. Here, we investigated the functional role of CBS' and 3-MST's catalytic activity in the murine breast cancer cell line EO771. The CBS/CSE inhibitor aminooxyacetic acid (AOAA) and the 3-MST inhibitor 2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one (HMPSNE) were used to assess the role of endogenous H2S in the modulation of breast cancer cell proliferation, migration, bioenergetics and viability in vitro. Methods included measurements of cell viability (MTT and LDH assays), cell proliferation and in vitro wound healing (IncuCyte) and cellular bioenergetics (Seahorse extracellular flux analysis). CBS and 3-MST, as well as expression were detected by Western blotting; H2S production was measured by the fluorescent dye AzMC. The results show that EO771 cells express CBS, CSE and 3-MST protein, as well as several enzymes involved in H2S degradation (SQR, TST, and ETHE1). Pharmacological inhibition of CBS or 3-MST inhibited H2S production, suppressed cellular bioenergetics and attenuated cell proliferation. Cell migration was only inhibited by the 3-MST inhibitor, but not the CBS/CSE inhibitor. Inhibition of CBS/CSE of 3-MST did not significantly affect basal cell viability; inhibition of 3-MST (but not of CBS/CSE) slightly enhanced the cytotoxic effects of oxidative stress (hydrogen peroxide challenge). From these findings, we conclude that endogenous H2S, generated by 3-MST and to a lower degree by CBS/CSE, significantly contributes to the maintenance of bioenergetics, proliferation and migration in murine breast cancer cells and may also exert a minor role as a cytoprotectant.

3.
Redox Biol ; 56: 102466, 2022 10.
Article En | MEDLINE | ID: mdl-36113340

Cysteine-rich angiogenic inducer 61 (CYR61, also termed CCN family member 1 or CCN1), is a matricellular protein encoded by the CYR61 gene. This protein has been implicated in the regulation of various cancer-associated processes including tumor growth, angiogenesis, tumor cell adhesion, migration, and invasion as well as the regulation of anticancer drug resistance. Hydrogen sulfide (H2S) is a gaseous endogenous biological mediator, involved in the regulation of cellular bioenergetics, angiogenesis, invasion, and chemotherapeutic resistance in several types of cancer. H2S is produced by three enzymes: cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current studies were set up to investigate if CBS or 3-MST regulates CyR61 in colon cancer cells in the context of the regulation of proliferation, migration, and survival. The study mainly utilized HCT116 cells, in which two of the principal H2S-producing enzymes, CBS and 3-MST, are highly expressed. The H2S donor GYY4137 and the polysulfide donor Na2S3 activated the CyR61 promoter in a concentration-dependent fashion. Aminooxyacetic acid (AOAA), a pharmacological inhibitor of CBS as well as HMPSNE: 2-[(4-hydroxy-6- methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one, a pharmacological inhibitor of 3-MST inhibited CyR61 mRNA expression. This effect was more pronounced in response to HMPSNE than to AOAA and occurred through the modulation of S1PR via ATF1 and CREB. CyR61 was found to play an active, but relatively minor role in maintaining colon cell proliferation. HMPSNE markedly suppressed the secretion/release of CyR61 from the colon cancer cells. Moreover, HMPSNE promoted colon cancer cell apoptosis; endogenously produced CyR61 was found to counteract this effect, at least in part via RhoA activation. Taken together, we conclude that the upregulation of 3-MST in cancer cells exerts cytoprotective effects and confers the cancer cells a more aggressive phenotype - at least in part via the modulation of CyR61 expression and release.


Antineoplastic Agents , Colonic Neoplasms , Hydrogen Sulfide , Aminooxyacetic Acid , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Cystathionine , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Cysteine , Cysteine-Rich Protein 61 , Humans , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Neovascularization, Pathologic , RNA, Messenger , Sulfurtransferases
4.
Antioxidants (Basel) ; 11(9)2022 Sep 15.
Article En | MEDLINE | ID: mdl-36139896

Recently, a CRISPR-Cas9 genome-editing system was developed with introduced sequential 'driver' mutations in the WNT, MAPK, TGF-ß, TP53 and PI3K pathways into organoids derived from normal human intestinal epithelial cells. Prior studies have demonstrated that isogenic organoids harboring mutations in the tumor suppressor genes APC, SMAD4 and TP53, as well as the oncogene KRAS, assumed more proliferative and invasive properties in vitro and in vivo. A separate body of studies implicates the role of various hydrogen sulfide (H2S)-producing enzymes in the pathogenesis of colon cancer. The current study was designed to determine if the sequential mutations in the above pathway affect the expression of various H2S producing enzymes. Western blotting was used to detect the expression of the H2S-producing enzymes cystathionine ß-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), as well as several key enzymes involved in H2S degradation such as thiosulfate sulfurtransferase/rhodanese (TST), ethylmalonic encephalopathy 1 protein/persulfide dioxygenase (ETHE1) and sulfide-quinone oxidoreductase (SQR). H2S levels were detected by live-cell imaging using a fluorescent H2S probe. Bioenergetic parameters were assessed by Extracellular Flux Analysis; markers of epithelial-mesenchymal transition (EMT) were assessed by Western blotting. The results show that the consecutive mutations produced gradual upregulations in CBS expression-in particular in its truncated (45 kDa) form-as well as in CSE and 3-MST expression. In more advanced organoids, when the upregulation of H2S-producing enzymes coincided with the downregulation of the H2S-degrading enzyme SQR, increased H2S generation was also detected. This effect coincided with the upregulation of cellular bioenergetics (mitochondrial respiration and/or glycolysis) and an upregulation of the Wnt/ß-catenin pathway, a key effector of EMT. Thus sequential mutations in colon epithelial cells according to the Vogelstein sequence are associated with a gradual upregulation of multiple H2S generating pathways, which, in turn, translates into functional changes in cellular bioenergetics and dedifferentiation, producing more aggressive and more invasive colon cancer phenotypes.

5.
J Enzyme Inhib Med Chem ; 37(1): 1773-1811, 2022 Dec.
Article En | MEDLINE | ID: mdl-35758198

The haem enzyme indoleamine 2,3-dioxygenase 1 (IDO1) catalyses the rate-limiting step in the kynurenine pathway of tryptophan metabolism and plays an essential role in immunity, neuronal function, and ageing. Expression of IDO1 in cancer cells results in the suppression of an immune response, and therefore IDO1 inhibitors have been developed for use in anti-cancer immunotherapy. Here, we report an extension of our previously described highly efficient haem-binding 1,2,3-triazole and 1,2,4-triazole inhibitor series, the best compound having both enzymatic and cellular IC50 values of 34 nM. We provide enzymatic inhibition data for almost 100 new compounds and X-ray diffraction data for one compound in complex with IDO1. Structural and computational studies explain the dramatic drop in activity upon extension to pocket B, which has been observed in diverse haem-binding inhibitor scaffolds. Our data provides important insights for future IDO1 inhibitor design.


Indoleamine-Pyrrole 2,3,-Dioxygenase , Triazoles , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Heme , Triazoles/chemistry , Triazoles/pharmacology
6.
Redox Biol ; 53: 102331, 2022 07.
Article En | MEDLINE | ID: mdl-35618601

The expression of the reverse transsulfuration enzyme cystathionine-ß-synthase (CBS) is markedly increased in many forms of cancer, including colorectal, ovarian, lung, breast and kidney, while in other cancers (liver cancer and glioma) it becomes downregulated. According to the clinical database data in high-CBS-expressor cancers (e.g. colon or ovarian cancer), high CBS expression typically predicts lower survival, while in the low-CBS-expressor cancers (e.g. liver cancer), low CBS expression is associated with lower survival. In the high-CBS expressing tumor cells, CBS, and its product hydrogen sulfide (H2S) serves as a bioenergetic, proliferative, cytoprotective and stemness factor; it also supports angiogenesis and epithelial-to-mesenchymal transition in the cancer microenvironment. The current article reviews the various tumor-cell-supporting roles of the CBS/H2S axis in high-CBS expressor cancers and overviews the anticancer effects of CBS silencing and pharmacological CBS inhibition in various cancer models in vitro and in vivo; it also outlines potential approaches for biomarker identification, to support future targeted cancer therapies based on pharmacological CBS inhibition.


Hydrogen Sulfide , Liver Neoplasms , Cell Proliferation , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Energy Metabolism , Humans , Hydrogen Sulfide/metabolism , Tumor Microenvironment
7.
J Med Chem ; 64(4): 2205-2227, 2021 02 25.
Article En | MEDLINE | ID: mdl-33557523

The heme enzyme indoleamine 2,3-dioxygenase 1 (IDO1) plays an essential role in immunity, neuronal function, and aging through catalysis of the rate-limiting step in the kynurenine pathway of tryptophan metabolism. Many IDO1 inhibitors with different chemotypes have been developed, mainly targeted for use in anti-cancer immunotherapy. Lead optimization of direct heme iron-binding inhibitors has proven difficult due to the remarkable selectivity and sensitivity of the heme-ligand interactions. Here, we present experimental data for a set of closely related small azole compounds with more than 4 orders of magnitude differences in their inhibitory activities, ranging from millimolar to nanomolar levels. We investigate and rationalize their activities based on structural data, molecular dynamics simulations, and density functional theory calculations. Our results not only expand the presently known four confirmed chemotypes of sub-micromolar heme binding IDO1 inhibitors by two additional scaffolds but also provide a model to predict the activities of novel scaffolds.


Azoles/pharmacology , Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Azoles/chemical synthesis , Azoles/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , HEK293 Cells , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Quantitative Structure-Activity Relationship
8.
Pharmacol Res ; 165: 105393, 2021 03.
Article En | MEDLINE | ID: mdl-33484818

Hydrogen sulfide (H2S) is an important endogenous gaseous transmitter mediator, which regulates a variety of cellular functions in autocrine and paracrine manner. The enzymes responsible for the biological generation of H2S include cystathionine-ß-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). Increased expression of these enzymes and overproduction of H2S has been implicated in essential processes of various cancer cells, including the stimulation of metabolism, maintenance of cell proliferation and cytoprotection. Cancer cell identity is characterized by so-called "transition states". The progression from normal (epithelial) to transformed (mesenchymal) state is termed epithelial-to-mesenchymal transition (EMT) whereby epithelial cells lose their cell-to-cell adhesion capacity and gain mesenchymal characteristics. The transition process can also proceed in the opposite direction, and this process is termed mesenchymal-to-epithelial transition (MET). The current project was designed to determine whether inhibition of endogenous H2S production in colon cancer cells affects the EMT/MET balance in vitro. Inhibition of H2S biosynthesis in HCT116 human colon cancer cells was achieved either with aminooxyacetic acid (AOAA) or 2-[(4-hydroxy-6-methylpyrimidin-2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one (HMPSNE). These inhibitors induced an upregulation of E-cadherin and Zonula occludens-1 (ZO-1) expression and downregulation of fibronectin expression, demonstrating that H2S biosynthesis inhibitors can produce a pharmacological induction of MET in colon cancer cells. These actions were functionally reflected in an inhibition of cell migration, as demonstrated in an in vitro "scratch wound" assay. The mechanisms involved in the action of endogenously produced H2S in cancer cells in promoting (or maintaining) EMT (or tonically inhibiting MET) relate, at least in part, in the induction of ATP citrate lyase (ACLY) protein expression, which occurs via upregulation of ACLY mRNA (via activation of the ACLY promoter). ACLY in turn, regulates the Wnt-ß-catenin pathway, an essential regulator of the EMT/MET balance. Taken together, pharmacological inhibition of endogenous H2S biosynthesis in cancer cells induces MET. We hypothesize that this may contribute to anti-cancer / anti-metastatic effects of H2S biosynthesis inhibitors.


ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , Colonic Neoplasms/drug therapy , Epithelial-Mesenchymal Transition/drug effects , Hydrogen Sulfide/antagonists & inhibitors , ATP Citrate (pro-S)-Lyase/metabolism , Antineoplastic Agents/pharmacology , Blotting, Western , Colonic Neoplasms/enzymology , Colonic Neoplasms/metabolism , Fluorescent Antibody Technique , HCT116 Cells/drug effects , HCT116 Cells/enzymology , HCT116 Cells/metabolism , Humans , Hydrogen Sulfide/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Real-Time Polymerase Chain Reaction
9.
Biomolecules ; 10(3)2020 03 13.
Article En | MEDLINE | ID: mdl-32183148

3-mercaptopyruvate sulfurtransferase (3-MST) has emerged as one of the significant sources of biologically active sulfur species in various mammalian cells. The current study was designed to investigate the functional role of 3-MST's catalytic activity in the murine colon cancer cell line CT26. The novel pharmacological 3-MST inhibitor HMPSNE was used to assess cancer cell proliferation, migration and bioenergetics in vitro. Methods included measurements of cell viability (MTT and LDH assays), cell proliferation and in vitro wound healing (IncuCyte) and cellular bioenergetics (Seahorse extracellular flux analysis). 3-MST expression was detected by Western blotting; H2S production was measured by the fluorescent dye AzMC. The results show that CT26 cells express 3-MST protein and mRNA, as well as several enzymes involved in H2S degradation (TST, ETHE1). Pharmacological inhibition of 3-MST concentration-dependently suppressed H2S production and, at 100 and 300 µM, attenuated CT26 proliferation and migration. HMPSNE exerted a bell-shaped effect on several cellular bioenergetic parameters related to oxidative phosphorylation, while other bioenergetic parameters were either unaffected or inhibited at the highest concentration of the inhibitor tested (300 µM). In contrast to 3-MST, the expression of CBS (another H2S producing enzyme which has been previously implicated in the regulation of various biological parameters in other tumor cells) was not detectable in CT26 cells and pharmacological inhibition of CBS exerted no significant effects on CT26 proliferation or bioenergetics. In summary, 3-MST catalytic activity significantly contributes to the regulation of cellular proliferation, migration and bioenergetics in CT26 murine colon cancer cells. The current studies identify 3-MST as the principal source of biologically active H2S in this cell line.


Cell Movement , Cell Proliferation , Colonic Neoplasms/epidemiology , Neoplasm Proteins/metabolism , Oxidative Phosphorylation , Sulfurtransferases/metabolism , Animals , Cell Line, Tumor , Colonic Neoplasms/pathology , Mice
10.
Nature ; 571(7766): 505-509, 2019 07.
Article En | MEDLINE | ID: mdl-31243369

The evolution of gene expression in mammalian organ development remains largely uncharacterized. Here we report the transcriptomes of seven organs (cerebrum, cerebellum, heart, kidney, liver, ovary and testis) across developmental time points from early organogenesis to adulthood for human, rhesus macaque, mouse, rat, rabbit, opossum and chicken. Comparisons of gene expression patterns identified correspondences of developmental stages across species, and differences in the timing of key events during the development of the gonads. We found that the breadth of gene expression and the extent of purifying selection gradually decrease during development, whereas the amount of positive selection and expression of new genes increase. We identified differences in the temporal trajectories of expression of individual genes across species, with brain tissues showing the smallest percentage of trajectory changes, and the liver and testis showing the largest. Our work provides a resource of developmental transcriptomes of seven organs across seven species, and comparative analyses that characterize the development and evolution of mammalian organs.


Gene Expression Regulation, Developmental , Organogenesis/genetics , Transcriptome/genetics , Animals , Biological Evolution , Chickens/genetics , Female , Humans , Macaca mulatta/genetics , Male , Mice , Opossums/genetics , Rabbits , Rats
11.
Bioorg Med Chem Lett ; 26(17): 4330-3, 2016 09 01.
Article En | MEDLINE | ID: mdl-27469130

Indoleamine 2,3-dioxygenase 2 (IDO2) is a potential therapeutic target for the treatment of diseases that involve immune escape such as cancer. In contrast to IDO1, only a very limited number of inhibitors have been described for IDO2 due to inherent difficulties in expressing and purifying a functionally active, soluble form of the enzyme. Starting from our previously discovered highly efficient 4-aryl-1,2,3-triazole IDO1 inhibitor scaffold, we used computational structure-based methods to design inhibitors of IDO2 which we then tested in cellular assays. Our approach yielded low molecular weight inhibitors of IDO2, the most active displaying an IC50 value of 51µM for mIDO2, and twofold selectivity over hIDO1. These compounds could be useful as molecular probes to investigate the biological role of IDO2, and could inspire the design of new IDO2 inhibitors.


Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Triazoles/chemical synthesis , Catalytic Domain , Drug Design , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Inhibitory Concentration 50 , Molecular Weight , Triazoles/chemistry , Triazoles/pharmacology
12.
PLoS One ; 10(5): e0125616, 2015.
Article En | MEDLINE | ID: mdl-25955316

Neuroblastoma (NB) is one of the most deadly solid tumors of the young child, for which new efficient and targeted therapies are strongly needed. The CXCR4/CXCR7/CXCL12 chemokine axis has been involved in the progression and organ-specific dissemination of various cancers. In NB, CXCR4 expression was shown to be associated to highly aggressive undifferentiated tumors, while CXCR7 expression was detected in more differentiated and mature neuroblastic tumors. As investigated in vivo, using an orthotopic model of tumor cell implantation of chemokine receptor-overexpressing NB cells (IGR-NB8), the CXCR4/CXCR7/CXCL12 axis was shown to regulate NB primary and secondary growth, although without any apparent influence on organ selective metastasis. In the present study, we addressed the selective role of CXCR4 and CXCR7 receptors in the homing phase of metastatic dissemination using an intravenous model of tumor cell implantation. Tail vein injection into NOD-scid-gamma mice of transduced IGR-NB8 cells overexpressing CXCR4, CXCR7, or both receptors revealed that all transduced cell variants preferentially invaded the adrenal gland and typical NB metastatic target organs, such as the liver and the bone marrow. However, CXCR4 expression favored NB cell dissemination to the liver and the lungs, while CXCR7 was able to strongly promote NB cell homing to the adrenal gland and the liver. Finally, coexpression of CXCR4 and CXCR7 receptors significantly and selectively increased NB dissemination toward the bone marrow. In conclusion, CXCR4 and CXCR7 receptors may be involved in a complex and organ-dependent control of NB growth and selective homing, making these receptors and their inhibitors potential new therapeutic targets.


Chemokine CXCL12/biosynthesis , Neuroblastoma/genetics , Receptors, CXCR4/biosynthesis , Receptors, CXCR/biosynthesis , Adrenal Glands/pathology , Animals , Bone Marrow/pathology , Cell Proliferation/genetics , Chemokine CXCL12/genetics , Gene Expression Regulation, Neoplastic , Humans , Liver/pathology , Lung/pathology , Mice , Neoplasm Invasiveness/genetics , Neoplasm Metastasis , Neuroblastoma/pathology , Receptors, CXCR/genetics , Receptors, CXCR4/genetics , Signal Transduction/genetics
...