Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Science ; 375(6577): 226-229, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35025635

ABSTRACT

Gravity curves space and time. This can lead to proper time differences between freely falling, nonlocal trajectories. A spatial superposition of a massive particle is predicted to be sensitive to this effect. We measure the gravitational phase shift induced in a matter-wave interferometer by a kilogram-scale source mass close to one of the wave packets. Deflections of each interferometer arm due to the source mass are independently measured. The phase shift deviates from the deflection-induced phase contribution, as predicted by quantum mechanics. In addition, the observed scaling of the phase shift is consistent with Heisenberg's error-disturbance relation. These results show that gravity creates Aharonov-Bohm phase shifts analogous to those produced by electromagnetic interactions.

2.
Opt Lett ; 45(23): 6555-6558, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33258860

ABSTRACT

We demonstrate a narrow-linewidth 780 nm laser system with up to 40W power and a frequency modulation bandwidth of 230 MHz. Efficient overlap on nonlinear optical elements combines two pairs of phase-locked frequency components into a single beam. Serrodyne modulation with a high-quality sawtooth waveform is used to perform frequency shifts with >96.5% efficiency over tens of megahertz. This system enables next-generation atom interferometry by delivering simultaneous, Stark-shift-compensated dual beam splitters while minimizing spontaneous emission.

3.
Phys Rev Lett ; 125(19): 191101, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33216577

ABSTRACT

We use a dual-species atom interferometer with 2 s of free-fall time to measure the relative acceleration between ^{85}Rb and ^{87}Rb wave packets in the Earth's gravitational field. Systematic errors arising from kinematic differences between the isotopes are suppressed by calibrating the angles and frequencies of the interferometry beams. We find an Eötvös parameter of η=[1.6±1.8(stat)±3.4(syst)]×10^{-12}, consistent with zero violation of the equivalence principle. With a resolution of up to 1.4×10^{-11} g per shot, we demonstrate a sensitivity to η of 5.4×10^{-11}/sqrt[Hz].

4.
Light Sci Appl ; 8: 37, 2019.
Article in English | MEDLINE | ID: mdl-30992987

ABSTRACT

Optical resonators are essential for fundamental science, applications in sensing and metrology, particle cooling, and quantum information processing. Cavities can significantly enhance interactions between light and matter. For many applications they perform this task best if the mode confinement is tight and the photon lifetime is long. Free access to the mode center is important in the design to admit atoms, molecules, nanoparticles, or solids into the light field. Here, we demonstrate how to machine microcavity arrays of extremely high quality in pristine silicon. Etched to an almost perfect parabolic shape with a surface roughness on the level of 2 Å and coated to a finesse exceeding F = 500,000, these new devices can have lengths below 17 µm, confining the photons to 5 µm waists in a mode volume of 88λ3. Extending the cavity length to 150 µm, on the order of the radius of curvature, in a symmetric mirror configuration yields a waist smaller than 7 µm, with photon lifetimes exceeding 64 ns. Parallelized cleanroom fabrication delivers an entire microcavity array in a single process. Photolithographic precision furthermore yields alignment structures that result in mechanically robust, pre-aligned, symmetric microcavity arrays, representing a light-matter interface with unprecedented performance.

5.
Phys Rev Lett ; 120(18): 183604, 2018 May 04.
Article in English | MEDLINE | ID: mdl-29775337

ABSTRACT

In an ideal test of the equivalence principle, the test masses fall in a common inertial frame. A real experiment is affected by gravity gradients, which introduce systematic errors by coupling to initial kinematic differences between the test masses. Here we demonstrate a method that reduces the sensitivity of a dual-species atom interferometer to initial kinematics by using a frequency shift of the mirror pulse to create an effective inertial frame for both atomic species. Using this method, we suppress the gravity-gradient-induced dependence of the differential phase on initial kinematic differences by 2 orders of magnitude and precisely measure these differences. We realize a relative precision of Δg/g≈6×10^{-11} per shot, which improves on the best previous result for a dual-species atom interferometer by more than 3 orders of magnitude. By reducing gravity gradient systematic errors to one part in 10^{13}, these results pave the way for an atomic test of the equivalence principle at an accuracy comparable with state-of-the-art classical tests.

6.
Phys Rev Lett ; 118(18): 183602, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28524681

ABSTRACT

Spacetime curvature induces tidal forces on the wave function of a single quantum system. Using a dual light-pulse atom interferometer, we measure a phase shift associated with such tidal forces. The macroscopic spatial superposition state in each interferometer (extending over 16 cm) acts as a nonlocal probe of the spacetime manifold. Additionally, we utilize the dual atom interferometer as a gradiometer for precise gravitational measurements.

7.
Nano Lett ; 15(8): 5604-8, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26167662

ABSTRACT

Optical control of nanoscale objects has recently developed into a thriving field of research with far-reaching promises for precision measurements, fundamental quantum physics and studies on single-particle thermodynamics. Here, we demonstrate the optical manipulation of silicon nanorods in high vacuum. Initially, we sculpture these particles into a silicon substrate with a tailored geometry to facilitate their launch into high vacuum by laser-induced mechanical cleavage. We manipulate and trace their center-of-mass and rotational motion through the interaction with an intense intracavity field. Our experiments show that the anisotropy of the nanorotors leads to optical forces that are three times stronger than on silicon nanospheres of the same mass. The optical torque experienced by the spinning rods will enable cooling of the rotational motion and torsional optomechanics in a dissipation-free environment.

8.
Nat Commun ; 4: 2743, 2013.
Article in English | MEDLINE | ID: mdl-24193438

ABSTRACT

Laser cooling has given a boost to atomic physics throughout the last 30 years, as it allows one to prepare atoms in motional states, which can only be described by quantum mechanics. Most methods rely, however, on a near-resonant and cyclic coupling between laser light and well-defined internal states, which has remained a challenge for mesoscopic particles. An external cavity may compensate for the lack of internal cycling transitions in dielectric objects and it may provide assistance in the cooling of their centre-of-mass state. Here we demonstrate cavity cooling of the transverse kinetic energy of silicon nanoparticles freely propagating in high vacuum (<10(-8) mbar). We create and launch them with longitudinal velocities down to v≤1 m s(-1) using laser-induced ablation of a pristine silicon wafer. Their interaction with the light of a high-finesse infrared cavity reduces their transverse kinetic energy by up to a factor of 30.

9.
Nat Nanotechnol ; 7(5): 297-300, 2012 Mar 25.
Article in English | MEDLINE | ID: mdl-22447163

ABSTRACT

The observation of interference patterns in double-slit experiments with massive particles is generally regarded as the ultimate demonstration of the quantum nature of these objects. Such matter-wave interference has been observed for electrons, neutrons, atoms and molecules and, in contrast to classical physics, quantum interference can be observed when single particles arrive at the detector one by one. The build-up of such patterns in experiments with electrons has been described as the "most beautiful experiment in physics". Here, we show how a combination of nanofabrication and nano-imaging allows us to record the full two-dimensional build-up of quantum interference patterns in real time for phthalocyanine molecules and for derivatives of phthalocyanine molecules, which have masses of 514 AMU and 1,298 AMU respectively. A laser-controlled micro-evaporation source was used to produce a beam of molecules with the required intensity and coherence, and the gratings were machined in 10-nm-thick silicon nitride membranes to reduce the effect of van der Waals forces. Wide-field fluorescence microscopy detected the position of each molecule with an accuracy of 10 nm and revealed the build-up of a deterministic ensemble interference pattern from single molecules that arrived stochastically at the detector. In addition to providing this particularly clear demonstration of wave-particle duality, our approach could also be used to study larger molecules and explore the boundary between quantum and classical physics.


Subject(s)
Molecular Imaging/methods , Nanotechnology/methods , Quantum Theory , Computer Simulation , Equipment Design , Indoles/chemistry , Isoindoles , Molecular Imaging/instrumentation , Nanotechnology/instrumentation , Signal-To-Noise Ratio
10.
Opt Lett ; 36(19): 3720-2, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21964075

ABSTRACT

We demonstrate a universal cavity stabilization scheme that exploits the intrinsic birefringence of dielectric multilayer mirrors. Homodyne locking using weak mirror birefringence of even an empty Fabry-Perot-type cavity requires neither frequency modulation nor mixing and allows us to generate an error signal that is comparable to more widely used heterodyne stabilization schemes.

SELECTION OF CITATIONS
SEARCH DETAIL