Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Atherosclerosis ; : 117576, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38797616

ABSTRACT

BACKGROUND AND AIMS: Despite firm evidence for an association between long-term ambient air pollution exposure and cardiovascular morbidity and mortality, results from epidemiological studies on the association between air pollution exposure and atherosclerosis have not been consistent. We investigated associations between long-term low-level air pollution exposure and coronary atherosclerosis. METHODS: We performed a cross-sectional analysis in the large Swedish CArdioPulmonary bioImaging Study (SCAPIS, n = 30 154), a random general population sample. Concentrations of total and locally emitted particulate matter <2.5 µm (PM2.5), <10 µm (PM10), and nitrogen oxides (NOx) at the residential address were modelled using high-resolution dispersion models. We estimated associations between air pollution exposures and segment involvement score (SIS), coronary artery calcification score (CACS), number of non-calcified plaques (NCP), and number of significant stenoses, using ordinal regression models extensively adjusted for potential confounders. RESULTS: Median 10-year average PM2.5 exposure was 6.2 µg/m3 (range 3.5-13.4 µg/m3). 51 % of participants were women and 51 % were never-smokers. None of the assessed pollutants were associated with a higher SIS or CACS. Exposure to PM2.5 was associated with NCP (adjusted OR 1.34, 95 % CI 1.13, 1.58, per 2.05 µg/m3). Associations with significant stenoses were inconsistent. CONCLUSIONS: In this large, middle-aged general population sample with low exposure levels, air pollution was not associated with measures of total burden of coronary atherosclerosis. However, PM2.5 appeared to be associated with a higher prevalence of non-calcified plaques. The results suggest that increased risk of early-stage atherosclerosis or rupture, but not increased total atherosclerotic burden, may be a pathway for long-term air pollution effects on cardiovascular disease.

2.
J Environ Radioact ; 172: 173-190, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28388500

ABSTRACT

Simulations of atmospheric dispersion of radon around the uranium mill tailings of the former Pridneprovsky Chemical Plant (PChP) in Ukraine were carried out with the aid of two atmospheric dispersion models: the Airviro Grid Model and the CALMET/CALPUFF model chain. The available measurement data of radon emission rates taken in the territories and the close vicinity of tailings were used in simulations. The results of simulations were compared to the yearly averaged measurements of concentration data. Both models were able to reasonably reproduce average radon concentration at the Sukhachivske site using averaged measured emission rates as input together with the measured meteorological data. At the same time, both models significantly underestimated concentrations as compared to measurements collected at the PChP industrial site. According to the results of both dispersion models, it was shown that only addition of significant radon emission rate from the whole territory of PChP in addition to emission rates from the tailings could explain the observed concentration measurements. With the aid of the uncertainty analysis, the radon emission rate from the whole territory of PChP was estimated to be between 1.5 and 3.5 Bq·m-2s-1.


Subject(s)
Models, Chemical , Radiation Monitoring , Radon/analysis , Soil Pollutants, Radioactive/analysis , Mining , Ukraine , Uranium
SELECTION OF CITATIONS
SEARCH DETAIL
...