Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Res ; 49(1): 1-13, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37646959

ABSTRACT

Epilepsy is a chronic neurological disease that is characterized by spontaneous and recurrent seizures. Regulated cell death is a controlled process and has been shown to be involved in neurodegenerative diseases. Necroptosis is a type of regulated cell death, and its association with epilepsy has been documented. Necroptosis signaling can be divided into two pathways: canonical and non-canonical pathways. Inhibition of caspase-8, dimerization of receptor-interacting protein kinase 1 (RIP1) and RIP3, activation of mixed-lineage kinase domain-like protein (MLKL), movement of MLKL to the plasma membrane, and cell rupture occurred in these pathways. Through literature review, it has been revealed that there is a relationship between seizure, neuroinflammation, and oxidative stress. The seizure activity triggers the activation of various pathways within the central nervous system, including TNF-α/matrix metalloproteases, Neogenin and Calpain/ Jun N-terminal Kinase 1, which result in distinct responses in the brain. These responses involve the activation of neurons and astrocytes, consequently leading to an increase in the expression levels of proteins and genes such as RIP1, RIP3, and MLKL in a time-dependent manner in regions such as the hippocampus (CA1, CA3, dentate gyrus, and hilus), piriform cortex, and amygdala. Furthermore, the imbalance in calcium ions, depletion of adenosine triphosphate, and elevation of extracellular glutamate and potassium within these pathways lead to the progression of necroptosis, a reduction in seizure threshold, and increased susceptibility to epilepsy. Therefore, it is plausible that therapeutic targeting of these pathways could potentially provide a promising approach for managing seizures and epilepsy.


Subject(s)
Epilepsy , Necroptosis , Humans , Oxidative Stress , Tumor Necrosis Factor-alpha/metabolism , Seizures , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Apoptosis , Necrosis/metabolism
2.
Int J Pharm ; 631: 122484, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36509221

ABSTRACT

To date, hydrogels have opened new prospects for potential applications for drug delivery. The thermo-sensitive hydrogels have the great potential to provide more effective and controllable release of therapeutic/bioactive agents in response to changes in temperature. PLGA is a safe FDA-approved copolymer with good biocompatibility and biodegradability. Recently, PLGA-based formulation have attracted a lot of interest for thermo-sensitive hydrogels. Thermo-sensitive PLGA-based hydrogels provide the delivery system with good spatial and temporal control, and have been widely applied in drug delivery. This review is focused on the recent progression of the thermo-sensitive and biodegradable PLGA-based hydrogels that have been reported for smart drug delivery to the different organs. Eventually, future perspectives and challenges of thermo-sensitive PLGA-based hydrogels are discussed briefly.


Subject(s)
Drug Delivery Systems , Hydrogels , Temperature , Polyethylene Glycols
3.
Cell Mol Neurobiol ; 43(3): 1049-1059, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35835968

ABSTRACT

Epilepsy is one of the most common serious brain diseases worldwide. Programmed cell death (PCD), a cellular self-destruction phenomenon, has been greatly documented in neurodegenerative diseases. Pyroptosis is a well-known pro-inflammatory PCD, and its involvement in epilepsy has been reported in animal models of epilepsy and also epileptic patients. Canonical (caspase-1-dependent) and non-canonical (caspase-1-independent) pathways are two main mechanisms implicated in pyroptotic cell death. Mouse caspase-11 or human analogues caspase-4/5 induce the non-canonical pathway. In both pathways, membrane gasdermin (GSDMD) pores contribute to pro-inflammatory cytokine release and lead to membrane destabilization and cell lysis. IL-1ß and IL-18 are pro-inflammatory cytokines that are released following pyroptotic PCD. Brain inflammation increases excitability in the nervous system, promotes seizure activity, and is probably associated with the molecular and synaptic changes involved in epileptogenesis. Pro-inflammatory cytokines affect the glutamate and GABA neurotransmitter release as well as their receptors, thereby resulting in seizure activity. This review is intended to provide an overview of the current published works on pyroptotic cell death in epilepsy. The mechanisms by which pro-inflammatory cytokines, including IL-1ß and IL-18 can promote epileptic discharges were also collected. According to this survey, since the involvement of pyroptosis in the development of epilepsy has been established, pyroptosis-targeted therapies may represent a novel anti-epileptogenic strategy.


Subject(s)
Epilepsy , Pyroptosis , Mice , Animals , Humans , Pyroptosis/physiology , Interleukin-18 , Apoptosis , Caspases/metabolism , Cytokines/metabolism , Seizures , Inflammasomes/metabolism
4.
Int Immunopharmacol ; 86: 106720, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32585605

ABSTRACT

Neuroinflammation has a key role in seizure generation and perpetuation in the neonatal period, and toll-like receptor 4 (TLR4) pathway has a prominent role in neuroinflammatory diseases. Administration of antioxidants and targeting TLR4 in the embryonic period may protect rat offspring against the next incidence of febrile seizure and its harmful effects. Curcumin and hesperidin are natural compounds with anti-inflammatory and antioxidant properties and have an inhibitory action on TLR4 receptors. We evaluated the effect of maternal administration of curcumin and hesperidin on infantile febrile seizure and subsequent memory dysfunction in adulthood. Hyperthermia febrile seizure was induced on postnatal days 9-11 on male rat pups with 24 h intervals, in a Plexiglas box that was heated to ~45 °C by a heat lamp. We used enzyme-linked immunosorbent assay, Western blotting, malondialdehyde (MDA), and glutathione (GSH) assessment for evaluation of inflammatory cytokine levels, TLR4 protein expression, and oxidative responses in the hippocampal tissues. For assessing working memory and long-term potentiation, the double Y-maze test and Schaffer collateral-CA1 in vivo electrophysiological recording were performed, respectively Our results showed that curcumin and hesperidin decreased TNF-α, IL-10, and TLR4 protein expression and reversed memory dysfunction. However, they did not provoke a significant effect on GSH content or amplitude and slope of recorded fEPSPs in the hippocampus. In addition, curcumin, but not hesperidin, decreased interleukin-1ß (IL-1ß) and MDA levels. These findings imply that curcumin and hesperidin induced significant protective effects on febrile seizures, possibly via their anti-inflammatory and antioxidant properties and downregulation of TLR4.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Curcumin/pharmacology , Hesperidin/pharmacology , Inflammation/prevention & control , Seizures, Febrile/prevention & control , Toll-Like Receptor 4/biosynthesis , Animals , Animals, Newborn , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Curcumin/therapeutic use , Cytokines/metabolism , Electrophysiological Phenomena/drug effects , Female , Glutathione/metabolism , Hesperidin/therapeutic use , Hippocampus , Hyperthermia/complications , Inflammation/metabolism , Male , Malondialdehyde/metabolism , Maze Learning/drug effects , Memory, Short-Term/drug effects , Mothers , Oxidative Stress/drug effects , Rats, Wistar , Seizures, Febrile/etiology , Seizures, Febrile/physiopathology
5.
Life Sci ; 212: 59-69, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30236869

ABSTRACT

G protein-coupled receptors (GPCRs) comprise a large number of receptors. Orphan GPCRs are divided into six families. These groups contain orphan receptors for which the endogenous ligands are unclear. They have various physiological effects in the body and have the potential to be used in the treatment of different diseases. Considering their important role in the central and peripheral nervous system, their role in the treatment of pain has been the subject of some recent studies. At present, there are effective therapeutics for the treatment of pain including opioid medications and non-steroidal anti-inflammatory drugs. However, the side effects of these drugs and the risks of tolerance and dependence remain a major problem. In addition, neuropathic pain is a condition that does not respond to currently available analgesic medications well. In the present review article, we aimed to review the most recent findings regarding the role of orphan GPCRs in the treatment of pain. Accordingly, based on the preclinical findings, the role of GPR3, GPR7, GPR8, GPR18, GPR30, GPR35, GPR40, GPR55, GPR74, and GPR147 in the treatment of pain was discussed. The present study highlights the role of orphan GPCRs in the modulation of pain and implies that these receptors are potential new targets for finding better and more efficient therapeutics for the management of pain particularly neuropathic pain.


Subject(s)
Pain/physiopathology , Receptors, G-Protein-Coupled/metabolism , Animals , Humans
6.
Iran J Pharm Res ; 13(4): 1431-6, 2014.
Article in English | MEDLINE | ID: mdl-25587334

ABSTRACT

Lallemantia royleana (Balangu) is a well known Iranian medicinal plant that its seed mucilage has many applications in modern pharmacology. Plant mucilage traditionally was used as a gel supplement, and natural matrix for sustained release of drugs. But it seems that these compounds are not a simple additive and also have many undiscovered pharmacological properties. In this research, the anesthetic action of gel prepared from Balangu mucilage alone and its mixture with lidocaine hydrochloride are compared with the effect of commercial 2% lidocaine gel by rat tail flick test. Mucilage of Balangu seed alone showed analgesic effect. Duration and potency of anesthesia induced by gel containing mucilage alone (0.01 g/mL) were identical to commercial 2% lidocaine gel. But, local anesthetic potency and duration of gel made from 2% lidocaine-mucilage gel mixture was significantly higher than commercial 2% lidocaine gel. The gel prepared from mucilage causes a good analgesia with unknown mechanism. Besides, mixture of Balangu mucilage prepared gel with lidocaine improves lidocaine anesthesia. The increase in potency of lidocaine action results from mucilage dermal penetration enhancing effects; and longer anesthetic duration of this mixture are related to the capability of mucilage based gel for sustained drug release.

SELECTION OF CITATIONS
SEARCH DETAIL