Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5158, 2024 03 02.
Article in English | MEDLINE | ID: mdl-38431744

ABSTRACT

There is a growing interest in the research and development of Cable Driven Rehabilitation Devices (CDRDs) due to multiple inherent features attractive to clinical applications, including low inertia, lightweight, high payload-to-weight ratio, large workspace, and modular design. However, previous CDRDs have mainly focused on modifying motor impairment in the sagittal plane, despite the fact that neurological disorders, such as stroke, often involve postural control and gait impairment in multiple planes. To address this gap, this work introduces a novel framework for designing a cable-driven lower limb rehabilitation exoskeleton which can assist with bi-planar impaired posture and gait. The framework used a lower limb model to analyze different cable routings inspired by human muscle architecture and attachment schemes to identify optimal routing and associated parameters. The selected cable routings were safeguarded for non-interference with the human body while generating bi-directional joint moments. The subsequent optimal cable routing model was then implemented in simulations of tracking reference healthy trajectory with bi-planar impaired gait (both in the sagittal and frontal planes). The results showed that controlling joints independently via cables yielded better performance compared to dependent control. Routing long cables through intermediate hinges reduced the peak tensions in the cables, however, at a cost of induced additional joint forces. Overall, this study provides a systematic and quantitative in silico approach, featured with accessible graphical user interface (GUI), for designing subject-specific, safe, and effective lower limb cable-driven exoskeletons for rehabilitation with options for multi-planar personalized impairment-specific features.


Subject(s)
Exoskeleton Device , Humans , Biomechanical Phenomena , Lower Extremity , Gait , Muscles
2.
Sensors (Basel) ; 23(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36772715

ABSTRACT

Although Cable-driven rehabilitation devices (CDRDs) have several advantages over traditional link-driven devices, including their light weight, ease of reconfiguration, and remote actuation, the majority of existing lower-limb CDRDs are limited to rehabilitation in the sagittal plane. In this work, we proposed a novel three degrees of freedom (DOF) lower limb model which accommodates hip abduction/adduction motion in the frontal plane, as well as knee and hip flexion/extension in the sagittal plane. The proposed model was employed to investigate the feasibility of using bi-planar cable routing to track a bi-planar reference healthy trajectory. Various possible routings of four cable configurations were selected and studied with the 3DOF model. The optimal locations of the hip cuffs were determined using optimization. When compared with the five-cable routing configuration, the four-cable routing produced higher joint forces, which motivated the future study of other potential cable routing configurations and their ability to track bi-planar motion.


Subject(s)
Exoskeleton Device , Knee Joint , Lower Extremity , Biomechanical Phenomena
3.
Front Bioeng Biotechnol ; 10: 920462, 2022.
Article in English | MEDLINE | ID: mdl-35795162

ABSTRACT

The global increase in the number of stroke patients and limited accessibility to rehabilitation has promoted an increase in the design and development of mobile exoskeletons. Robot-assisted mobile rehabilitation is rapidly emerging as a viable tool as it could provide intensive repetitive movement training and timely standardized delivery of therapy as compared to conventional manual therapy. However, the majority of existing lower limb exoskeletons continue to be heavy and induce unnecessary inertia and inertial vibration on the limb. Cable-driven exoskeletons can overcome these issues with the provision of remote actuation. However, the number of cables and routing can be selected in various ways posing a challenge to designers regarding the optimal design configuration. In this work, a simulation-based generalized framework for modelling and assessment of cable-driven mobile exoskeleton is proposed. The framework can be implemented to identify a 'suitable' configuration from several potential ones or to identify the optimal routing parameters for a given configuration. For a proof of concept, four conceptual configurations of cable-driven exoskeletons (one with a spring) were developed in a manner where both positive and negative moments could be generated for each joint (antagonistic configuration). The models were analyzed using the proposed framework and a decision metric table has been developed based on the models' performance and requirements. The weight of the metrics can be adjusted depending on the preferences and specified constraints. The maximum score is assigned to the configuration with minimum requirement or error, maximum performance, and vice versa. The metric table indicated that the 4-cable configuration is a promising design option for a lower limb rehabilitation exoskeleton based on tracking performance, model requirements, and component forces exerted on the limb.

4.
Front Robot AI ; 5: 68, 2018.
Article in English | MEDLINE | ID: mdl-33500947

ABSTRACT

This research work aims at realizing a new compliant robotic actuator for safe human-robotic interaction. In this paper, we present the modeling, control, and numerical simulations of a novel Binary-Controlled Variable Stiffness Actuator (BcVSA) aiming to be used for the development of a novel compliant robotic manipulator. BcVSA is the proof of concept of the active revolute joint with the variable recruitment of series-parallel elastic elements. We briefly recall the basic design principle which is based on a stiffness varying mechanism consisting of a motor, three inline clutches, and three torsional springs with stiffness values ( K 0 , 2 K 0 , 4 K 0 ) connected to the load shaft and the motor shaft through two planetary sun gear trains with ratios (4:1, 4:1 respectively). We present the design concept, stiffness and dynamic modeling, and control of our BcVSA. We implemented three kinds of Multiple Model Predictive Control (MPC) to control our actuator. The main motivation of choosing this controller lies in the fact that working principle of multiple MPC and multiple states space representation (stiffness level) of our actuator share similar interests. In particular, we implemented Multiple MPC, Multiple Explicit MPC, and Approximated Multiple Explicit MPC. Numerical simulations are performed in order to evaluate their effectiveness for the future experiments on the prototype of our actuator. The simulation results showed that the Multiple MPC, and the Multiple Explicit MPC have similar results from the robustness point of view. On the other hand, the robustness performance of Approximated Multiple Explicit MPC is not good as compared to other controllers but it works in the offline framework while having the capability to compute the sub-optimal results. We also performed the comparison of MPC based controllers with the Computed Torque Control (CTC), and Linear Quadratic Regulator (LQR). In future, we are planning to test the presented approach on the hardware prototype of our actuator.

SELECTION OF CITATIONS
SEARCH DETAIL
...