Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 622-623: 1519-1531, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29054614

ABSTRACT

Changes in drought around the globe are among the most daunting potential effects of climate change. However, changes in droughts are often not well distinguished from changes in aridity levels. As drought constitutes conditions of aridity, the projected declines in mean precipitation tend to override changes in drought. This results in projections of more dire changes in drought than ever. The overestimate of changes can be attributed to the use of 'static' normal precipitation in the derivation of drought events. The failure in distinguishing drought from aridity is a conceptual problem of concern, particularly to drought policymakers. Given that the key objective of drought policies is to determine drought conditions, which are rare and so protracted that they are beyond the scope of normal risk management, for interventions. The main objective of this Case Study of Brazil is to demonstrate the differences between projections of changes in drought based on 'static' and '30-year dynamic' precipitation normal conditions. First we demonstrate that the 'static' based projections suggest 4-fold changes in the probability of drought-year occurrences against changes by the dynamic normal precipitation. The 'static-normal mean precipitation' based projections tend to be monotonically increasing in magnitude, and were arguably considered unrealistic. Based on the '30-year dynamic' normal precipitation conditions, the 13-member GCM ensemble median projection estimates of changes for 2050 under rcp4.51 and rcp8.52 suggest: (i) Significant differences between changes associated with rcp4.5 and rcp8.5, and are more noticeable for droughts at long than short timescales in the 2070; (ii) Overall, the results demonstrate more realistic projections of changes in drought characteristics over Brazil than previous projections based on 'static' normal precipitation conditions. However, the uncertainty of response of droughts to climate change in CMIP5 simulations is still large, regardless of GCMs selection and translation processes undertaken.

2.
Sci Total Environ ; 599-600: 372-386, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28482297

ABSTRACT

For Brazil, a country frequented by droughts and whose rural inhabitants largely depend on groundwater, reliance on isotope for its monitoring, though accurate, is expensive and limited in spatial coverage. We exploit total water storage (TWS) derived from Gravity Recovery and Climate Experiment (GRACE) satellites to analyse spatial-temporal groundwater changes in relation to geological characteristics. Large-scale groundwater changes are estimated using GRACE-derived TWS and altimetry observations in addition to GLDAS and WGHM model outputs. Additionally, TRMM precipitation data are used to infer impacts of climate variability on groundwater fluctuations. The results indicate that climate variability mainly controls groundwater change trends while geological properties control change rates, spatial distribution, and storage capacity. Granular rocks in the Amazon and Guarani aquifers are found to influence larger storage capability, higher permeability (>10-4 m/s) and faster response to rainfall (1 to 3months' lag) compared to fractured rocks (permeability <10-7 m/s and lags > 3months) found only in Bambui aquifer. Groundwater in the Amazon region is found to rely not only on precipitation but also on inflow from other regions. Areas beyond the northern and southern Amazon basin depict a 'dam-like' pattern, with high inflow and slow outflow rates (recharge slope > 0.75, discharge slope < 0.45). This is due to two impermeable rock layer-like 'walls' (permeability <10-8 m/s) along the northern and southern Alter do Chão aquifer that help retain groundwater. The largest groundwater storage capacity in Brazil is the Amazon aquifer (with annual amplitudes of > 30cm). Amazon's groundwater declined between 2002 and 2008 due to below normal precipitation (wet seasons lasted for about 36 to 47% of the time). The Guarani aquifer and adjacent coastline areas rank second in terms of storage capacity, while the northeast and southeast coastal regions indicate the smallest storage capacity due to lack of rainfall (annual average is rainfall <10cm).

3.
Sci Total Environ ; 566-567: 1472-1488, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27317137

ABSTRACT

To provide information useful in policy formulation and management of drought impacts in Brazil, in this study, a sequence of drought events based on monthly rainfall of 1901-2013 on ~25 km x 25 km grid are derived at 4 timescales that include short-timescales (3-month and 6-month) and medium to long-timescales (12-month and 24-month). Subsequently, probability of drought occurrences, intensity, duration and areal-extent are calculated. The probabilities of occurrence of severe and extreme droughts at short-timescales are 1 in 12 and 1 in 66 years, respectively, all over the country. At medium to long-timescales, the probability of severe droughts is about 1 in 20 years in northern Brazil, and 1 in 10 years in the south. The probabilities of extreme droughts are 1 in 9 and 1 in 12 years over northern Brazil and in the south, respectively. In general, no evidence of significant (α =0.05) trend is detected in drought frequency, intensity, and duration over the last 11 decades (since 1901) at all the 4 timescales. The drought areal-extent show increasing trends of 3.4%/decade over Brazil for both 3-month and 6-month timescales. However, the trend increases for the 12-month and 24-month timescales are relatively smaller, i.e., 2.4%/decade and 0.5%/decade, respectively.


Subject(s)
Climate Change , Droughts , Brazil , Probability , Seasons , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL