Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37628885

ABSTRACT

Bacterial adaptation to cold stress requires wide transcriptional reprogramming. However, the knowledge of molecular mechanisms underlying the cold stress response of mycobacteria is limited. We conducted comparative transcriptomic analysis of Mycobacterium smegmatis subjected to cold shock. The growth of M. smegmatis cultivated at 37 °C was arrested just after exposure to cold (acclimation phase) but later (by 24 h) was resumed at a much slower rate (adaptation phase). Transcriptomic analyses revealed distinct gene expression patterns corresponding to the two phases. During the acclimation phase, differential expression was observed for genes associated with cell wall remodeling, starvation response, and osmotic pressure stress, in parallel with global changes in the expression of transcription factors and the downregulation of ribosomal genes, suggesting an energy-saving strategy to support survival. At the adaptation phase, the expression profiles were recovered, indicating restoration of the processes repressed earlier. Comparison of transcriptional responses in M. smegmatis with those in other bacteria revealed unique adaptation strategies developed by mycobacteria. Our findings shed light on the molecular mechanisms underlying M. smegmatis survival under cold stress. Further research should clarify whether the discovered transcriptional mechanisms exist in other mycobacterial species, including pathogenic Mycobacterium tuberculosis, which could be important for transmission control.


Subject(s)
Cold-Shock Response , Mycobacterium smegmatis , Mycobacterium smegmatis/genetics , Cold-Shock Response/genetics , Acclimatization/genetics , Cell Wall , Down-Regulation
2.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175635

ABSTRACT

In the course of evolution, Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, has developed sophisticated strategies to evade host immune response, including the synthesis of small non-coding RNAs (sRNAs), which regulate post-transcriptional pathways involved in the stress adaptation of mycobacteria. sRNA MTS1338 is upregulated in Mtb during its infection of cultured macrophages and in the model of chronic tuberculosis, suggesting involvement in host-pathogen interactions. Here, we analyzed the role of MTS1338 in the Mtb response to macrophage-like stresses in vitro. The Mtb strain overexpressing MTS1338 demonstrated enhanced survival ability under low pH, nitrosative, and oxidative stress conditions simulating the antimicrobial environment inside macrophages. Transcriptomic analysis revealed that in MTS1338-overexpressing Mtb, the stress factors led to the activation of a number of transcriptional regulators, toxin-antitoxin modules, and stress chaperones, about half of which coincided with the genes induced in Mtb phagocytosed by macrophages. We determined the MTS1338 "core regulon", consisting of 11 genes that were activated in all conditions under MTS1338 overexpression. Our findings indicate that MTS1338 is a stress-induced sRNA that promotes Mtb survival in macrophages by triggering adaptive transcriptional mechanisms in response to host antimicrobial defense reactions.


Subject(s)
Anti-Infective Agents , Mycobacterium tuberculosis , RNA, Small Untranslated , Tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , Gene Expression Regulation, Bacterial , Tuberculosis/microbiology , Anti-Infective Agents/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , Host-Pathogen Interactions
4.
Nucleic Acids Res ; 51(6): 2586-2601, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36840712

ABSTRACT

Progress in RNA metabolism and function studies relies largely on molecular imaging systems, including those comprising a fluorogenic dye and an aptamer-based fluorescence-activating tag. G4 aptamers of the Mango family, typically combined with a duplex/hairpin scaffold, activate the fluorescence of a green light-emitting dye TO1-biotin and hold great promise for intracellular RNA tracking. Here, we report a new Mango-based imaging platform. Its key advantages are the tunability of spectral properties and applicability for visualization of small RNA molecules that require minimal tag size. The former advantage is due to an expanded (green-to-red-emitting) palette of TO1-inspired fluorogenic dyes, and the truncated duplex scaffold ensures the latter. To illustrate the applicability of the improved platform, we tagged Mycobacterium tuberculosis sncRNA with the shortened aptamer-scaffold tag. Then, we visualized it in bacteria and bacteria-infected macrophages using the new red light-emitting Mango-activated dye.


Subject(s)
Fluorescent Dyes , Macrophages , Mangifera , RNA, Small Untranslated , Aptamers, Nucleotide/genetics , Fluorescence , Fluorescent Dyes/metabolism , Mangifera/genetics , Mangifera/metabolism , RNA/metabolism , Macrophages/microbiology
5.
Biomolecules ; 12(4)2022 03 24.
Article in English | MEDLINE | ID: mdl-35454081

ABSTRACT

Parkinson disease (PD) is attributed to a proteostasis disorder mediated by α-synuclein accumulating in a specific brain region. PD manifestation is often related to extraneuronal alterations, some of which could be used as diagnostic or prognostic PD biomarkers. In this work, we studied the shifts in the expression of proteostasis-associated chaperones of the HSP70 family and autophagy-dependent p62 protein values in the peripheral blood mononuclear cells (PBMC) of mild to moderate PD patients. Although we did not detect any changes in the intracellular HSP70 protein pool in PD patients compared to non-PD controls, an increase in the transcriptional activity of the stress-associated HSPA1A/B and HSPA6 genes was observed in these cells. Basal p62 content was found to be increased in PD patients' PBMC, similarly to the p62 level in substantia nigra neural cells in PD. Moreover, the spontaneous apoptosis level was increased among PBMC and positively correlated with the p62 intracellular level in the PD group. A combined HSPA6- and p62-based analysis among 26 PD patients and 36 age-matched non-PD controls pointed out the diagnostic significance of these markers, with intermediate sensitivity and high specificity of this combination when observing patients diagnosed with PD.


Subject(s)
HSP70 Heat-Shock Proteins , Parkinson Disease , Autophagy/physiology , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Proteostasis
6.
Biochemistry (Mosc) ; 86(Suppl 1): S109-S119, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33827403

ABSTRACT

Mycobacterium tuberculosis possesses a significant arsenal of strategies to combat immune defense of the host organism. Small noncoding RNAs, which constitute the largest group of regulatory RNAs, play an important role in the host-pathogen interactions and represent one of the levels of the regulation of interactions of microbial cells with their environment. The regulatory role of small RNAs in pathogenic bacteria is essential when rapid adaptation to the changing environmental conditions with further synchronization of metabolic reactions are required to ensure microbial survival and infection progression. During the past few years, eight small RNAs from M. tuberculosis have been functionally characterized, and targets for four of them have been identified. Small RNAs from M. tuberculosis and other pathogenic microorganisms were found to be one of the most important functional factors in the adaptive response to changing environmental conditions.


Subject(s)
Host-Pathogen Interactions , Mycobacterium tuberculosis/physiology , RNA, Small Untranslated/physiology , Tuberculosis/metabolism , Humans , Mycobacterium tuberculosis/metabolism , RNA, Bacterial , RNA, Small Untranslated/metabolism , Tuberculosis/etiology , Tuberculosis/microbiology
7.
Eur J Cancer Prev ; 30(2): 127-131, 2021 03 01.
Article in English | MEDLINE | ID: mdl-32516173

ABSTRACT

Along with other malignant diseases, lung cancer arises from the precancerous lung tissue state. Aberrant DNA methylation (hypermethylation of certain genes and hypomethylation of retrotransposons) is known as one of the driving forces of malignant cell transformation. Epigenetic changes were shown to be detectable in DNA, circulating in the blood (cirDNA) of cancer patients, indicating the possibility to use them as cancer markers. The current study is the first to compare the Long interspersed nuclear element-1 (LINE-1) methylation level in the blood from lung cancer patients before treatment versus different control groups as healthy subjects, patients with bronchitis and patients with chronic obstructive pulmonary disease (COPD). The concentration of LINE-1 methylated fragments, region 1 (LINE-1 methylated, LINE-1-met) was estimated by quantitative methyl-specific PCR. The total concentration of the circulating LINE-1 copies was measured by qPCR specific for LINE-1 region 2, which was selected due to its CpG methylation-independent sequence (LINE-1-Ind). Both LINE-1 methylation level and LINE-1 methylation index (LINE-1-met/LINE-1-Ind ratio) was decreased in lung cancer patients compared with the joint control group (healthy subjects + patients with bronchitis + COPD patients) (Mann-Whitney U-test, P = 0.016). We also found that the tendency of LINE-1 methylation index decreases in the cirDNA from lung cancer patients versus COPD patients (Mann-Whitney U-test, P = 0.07). Our data indicate that the quantitative analysis of the LINE-1 methylation level in the cirDNA is valuable for discrimination of lung cancer patients from patients with chronic inflammatory lung diseases.


Subject(s)
Bronchitis , Cell-Free Nucleic Acids , Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , Bronchitis/genetics , DNA Methylation , Humans , Long Interspersed Nucleotide Elements , Lung , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics
8.
Cells ; 9(9)2020 09 02.
Article in English | MEDLINE | ID: mdl-32887319

ABSTRACT

Cancer remains one of the main causes of human mortality despite significant progress in its diagnostics and therapy achieved in the past decade. Massive hypomethylation of retrotransposons, in particular LINE-1, is considered a hallmark of most malignant transformations as it results in the reactivation of retroelements and subsequent genomic instability. Accumulating data on LINE-1 aberrant methylation in different tumor types indicates its significant role in cancer initiation and progression. However, direct evidence that LINE-1 activation can be used as a cancer biomarker is still limited. The objective of this review was to critically evaluate the published results regarding the diagnostic/prognostic potential of the LINE-1 methylation status in cancer. Our analysis indicates that LINE-1 hypomethylation is a promising candidate biomarker of cancer development, which, however, needs validation in both clinical and laboratory studies to confirm its applicability to different cancer types and/or stages. As LINE-1 is present in multiple cell-free copies in blood, it has advantages over single-copy genes regarding perspectives of using its methylation status as an epigenetic cancer biomarker for cell-free DNA liquid biopsy.


Subject(s)
Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/genetics , DNA Transposable Elements , Gene Expression Regulation, Neoplastic , Long Interspersed Nucleotide Elements , Neoplasms/genetics , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/blood , Cell-Free Nucleic Acids/blood , DNA Methylation , Disease Progression , Epigenesis, Genetic , Genomic Instability , Humans , Liquid Biopsy , Neoplasms/diagnosis , Neoplasms/drug therapy , Neoplasms/mortality , Prognosis , Signal Transduction , Survival Analysis
9.
Front Pharmacol ; 10: 1049, 2019.
Article in English | MEDLINE | ID: mdl-31632266

ABSTRACT

The worldwide spread of multidrug-resistant Mycobacterium tuberculosis strains prompted the development of new strategies to combat tuberculosis, one of which is antisense therapy based on targeting bacterial mRNA by oligonucleotide derivatives. However, the main limitation of antisense antibacterials is poor cellular uptake because of electrostatic charge. Phosphoryl guanidine oligo-2'-O-methylribonucleotides (2'-OMe PGOs) are a novel type of uncharged RNA analogues with high RNA affinity, which penetrate through the bacterial cell wall more efficiently. In this study, we investigated the uptake and biological effects of 2'-OMe PGO in mycobacteria. The results indicated that 2'-OMe PGO specific for the alanine dehydrogenase-encoding ald gene inhibited the growth of Mycobacterium smegmatis and downregulated ald expression at both the transcriptional and translational levels through an RNase H-independent mechanism, showing higher biological activity than its phosphorothioate oligonucleotide counterpart. Confocal microscopy revealed that the anti-ald 2'-OMe PGO was taken up by intracellular mycobacteria residing in RAW 264.7 macrophages without exerting toxic effects on eukaryotic cells, indicating that 2'-OMe PGO was able to efficiently cross two cellular membranes. In addition, 2'-OMe PGO inhibited the transcription of the target ald gene in M. smegmatis-infected macrophages. Thus, we demonstrated, for the first time, a possibility of targeting gene expression and inhibiting growth of intracellular mycobacteria by antisense oligonucleotide derivatives. Strong antisense activity and efficient uptake of the new RNA analogue, 2'-OMe PGO, by intracellular microorganisms revealed here may promote the development of novel therapeutic strategies to treat TB and prevent the emergence of drug-resistant mycobacterial strains.

10.
Article in English | MEDLINE | ID: mdl-31428590

ABSTRACT

Under unfavorable conditions such as host immune responses and environmental stresses, human pathogen Mycobacterium tuberculosis may acquire the dormancy phenotype characterized by "non-culturability" and a substantial decrease of metabolic activity and global transcription rates. Here, we found that the transition of M. tuberculosis from the dormant "non-culturable" (NC) cells to fully replicating population in vitro occurred not earlier than 7 days after the start of the resuscitation process, with predominant resuscitation over this time interval evidenced by shortening apparent generation time up to 2.8 h at the beginning of resuscitation. The early resuscitation phase was characterized by constant, albeit low, incorporation of radioactive uracil, indicating de novo transcription immediately after the removal of the stress factor, which resulted in significant changes of the M. tuberculosis transcriptional profile already after the first 24 h of resuscitation. This early response included transcriptional upregulation of genes encoding enzymes of fatty acid synthase system type I (FASI) and type II (FASII) responsible for fatty acid/mycolic acid biosynthesis, and regulatory genes, including whiB6 encoding a redox-sensing transcription factor. The second resuscitation phase took place 4 days after the resuscitation onset, i.e., still before the start of active cell division, and included activation of central metabolism genes encoding NADH dehydrogenases, ATP-synthases, and ribosomal proteins. Our results demonstrate, for the first time, that the resuscitation of dormant NC M. tuberculosis is characterized by immediate activation of de novo transcription followed by the upregulation of genes controlling key metabolic pathways and then, cell multiplication.


Subject(s)
Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/genetics , Transcription, Genetic , Gene Expression Profiling , Time Factors
11.
BMC Cancer ; 18(1): 20, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29301509

ABSTRACT

BACKGROUND: Aberrant overexpression of PIWI/piRNA pathway proteins is shown for many types of tumors. Interestingly, these proteins are downregulated in testicular germ cell tumors (TGCTs) compared to normal testis tissues. Here, we used germline and TGCT markers to assess the piRNA biogenesis and function in TGCTs and their precursor germ cell neoplasia in situ (GCNIS). METHODS: We used small RNA deep sequencing, qRT-PCR, and mining public RNAseq/small RNA-seq datasets to examine PIWI/piRNA gene expression and piRNA biogenesis at four stages of TGCT development: (i) germ cells in healthy testis tissues, (ii) germ cells in testis tissues adjacent to TGCTs, (iii) GCNIS cells and (iv) TGCT cells. To this end, we studied three types of samples: (a) healthy testis, (b) testis tissues adjacent to two types of TGCTs (seminomas and nonseminomas) and containing both germ cells and GCNIS cells, as well as (c) matching TGCT samples. RESULTS: Based on our analyses of small RNA-seq data as well as the presence/absence of expression correlation between PIWI/piRNA pathway genes and germline or TGCT markers, we can suggest that piRNA biogenesis is intact in germ cells present in healthy adult testes, and adjacent to TGCTs. Conversely, GCNIS and TGCT cells were found to lack PIWI/piRNA pathway gene expression and germline-like piRNA biogenesis. However, using an in vitro cell line model, we revealed a possible role for a short PIWIL2/HILI isoform expressed in TGCTs in posttranscriptional regulation of the youngest members of LINE and SINE classes of transposable elements. Importantly, this regulation is also implemented without involvement of germline-like biogenesis of piRNAs. CONCLUSIONS: Though further studies are warranted, these findings suggest that the conventional germline-like PIWI/piRNA pathway is lost in transition from germ cells to GCNIS cells.


Subject(s)
Argonaute Proteins/genetics , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms/genetics , RNA, Small Interfering/genetics , Testicular Neoplasms/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic/genetics , Germ Cells/metabolism , Germ Cells/pathology , High-Throughput Nucleotide Sequencing , Humans , Male , Neoplasm Proteins , Neoplasms/pathology , Neoplasms, Germ Cell and Embryonal/pathology , Testicular Neoplasms/pathology , Testis/metabolism , Testis/pathology
12.
Cell Stress Chaperones ; 22(1): 67-76, 2017 01.
Article in English | MEDLINE | ID: mdl-27783273

ABSTRACT

Cell-type specific variations are typical for the expression of different members of the HSP70 family. In circulating immune cells, HSP70 proteins interact with units of signaling pathways involved in the immune responses and may promote cell survival in sites of inflammation. In this work, we compared basal HSP70 expression and stress-induced HSP70 response in polymorphonuclear and mononuclear human leukocytes. The intracellular content of inducible and constitutive forms of HSP70 was analyzed in relation to the transcriptional activity of HSPA genes. Hyperthermia was used as the stress model for induction of HSP70 synthesis in the cells. Our results demonstrated that granulocytes (mainly neutrophils) and mononuclear cells differ significantly by both basal HSP70 expression and levels of HSP70 induction under hyperthermia. The differences were observed at the levels of HSPA gene transcription and intracellular HSP70 content. The expression of constitutive Hsс70 protein was much higher in mononuclear cells consisting of monocytes and lymphocytes than in granulocytes. At the same time, intact neutrophils showed increased expression of inducible Hsp70 protein compared to mononuclear cells. Heat treatment induced additional expression of HSPA genes in leukocytes. The most pronounced increase in the expression was observed in polymorphonuclear and mononuclear leukocytes for HSPA1A/B. However, in granulocytes, the induction of the transcription of the HSPA8 gene encoding the Hsc70 protein was significantly higher than in mononuclear cells. These variations in transcriptional activity of HSPA genes and intracellular HSP70 content in different populations of leukocytes may reflect specified requirements for the chaperone activity in the cells with a distinct functional role in the immune system.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Leukocytes, Mononuclear/metabolism , Adult , Aged , Female , Granulocytes/cytology , Granulocytes/metabolism , HSC70 Heat-Shock Proteins/genetics , HSC70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Heat-Shock Response/genetics , Humans , Leukocytes, Mononuclear/cytology , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Temperature , Transcription, Genetic , Young Adult
13.
Lung Cancer ; 99: 127-30, 2016 09.
Article in English | MEDLINE | ID: mdl-27565927

ABSTRACT

Circulating DNA has recently gained attention as a fast and non-invasive way to assess tumor biomarkers. Since hypomethylation of LINE-1 repetitive elements was described as one of the key hallmarks of tumorigenesis, we aimed to establish whether the methylation level of LINE-1 retrotransposons changes in cell-surface-bound fraction of circulating DNA (csbDNA) of lung cancer patients. Methylated CpG Island Recovery Assay (MIRA) coupled to qPCR-based quantitation was performed to assess integral methylation level of LINE-1 promoters in csbDNA of non-small cell lung cancer patients (n=56) and healthy controls (n=44). Deep sequencing of amplicons revealed that hypomethylation of LINE-1 promoters in csbDNA of lung cancer patients is more pronounced for the human-specific L1Hs family. Statistical analysis demonstrates significant difference in LINE-1 promoter methylation index between cancer patients and healthy individuals (ROC-curve analysis: n=100, AUC=0.69, p=0.0012) and supports the feasibility of MIRA as a promising non-invasive approach.


Subject(s)
DNA Methylation , DNA, Neoplasm/genetics , Long Interspersed Nucleotide Elements/genetics , Lung Neoplasms/genetics , Aged , Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/genetics , Computational Biology/methods , CpG Islands , DNA, Neoplasm/blood , Female , Humans , Lung Neoplasms/blood , Male , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Promoter Regions, Genetic , ROC Curve
14.
PLoS One ; 11(6): e0156454, 2016.
Article in English | MEDLINE | ID: mdl-27248499

ABSTRACT

Recently, more evidence supporting common nature of promoters and enhancers has been accumulated. In this work, we present data on chromatin modifications and non-polyadenylated transcription characteristic for enhancers as well as results of in vitro luciferase reporter assays suggesting that PIWIL2 alternative promoter in exon 7 also functions as an enhancer for gene PHYHIP located 60Kb upstream. This finding of an intragenic enhancer serving as a promoter for a shorter protein isoform implies broader impact on understanding enhancer-promoter networks in regulation of gene expression.


Subject(s)
Argonaute Proteins/genetics , Enhancer Elements, Genetic , Promoter Regions, Genetic , Cell Line, Tumor , Chromatin/metabolism , Computer Simulation , Exons , Humans , Poly A/metabolism , RNA, Messenger/metabolism
15.
Oncotarget ; 7(16): 22439-47, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-26843623

ABSTRACT

PIWI pathway proteins are expressed during spermatogenesis where they play a key role in germ cell development. Epigenetic loss of PIWI proteins expression was previously demonstrated in testicular germ cell tumors (TGCTs), implying their involvement in TGCT development. In this work, apart from studying only normal testis and TGCT samples, we also analyzed an intermediate stage, i.e. preneoplastic testis tissues adjacent to TGCTs. Importantly, in this study, we minimized the contribution of patient-to-patient heterogeneity by using matched preneoplastic/TGCT samples. Surprisingly, expression of germ cell marker DDX4 suggests that spermatogenesis is retained in premalignant testis tissues adjacent to nonseminoma, but not those adjacent to seminoma. Moreover, this pattern is followed by expression of PIWI pathway genes, which impacts one of their functions: DNA methylation level over LINE-1 promoters is higher in preneoplastic testis tissues adjacent to nonseminomas than those adjacent to seminomas. This finding might imply distinct routes for development of the two types of TGCTs and could be used as a novel diagnostic marker, possibly, noninvasively. Finally, we studied the role of CpG island methylation in expression of PIWI genes in patient samples and using in vitro experiments in cell line models: a more complex interrelation between DNA methylation and expression of the corresponding genes was revealed.


Subject(s)
Biomarkers, Tumor/genetics , Precancerous Conditions/genetics , Seminoma/genetics , Testicular Neoplasms/genetics , Area Under Curve , Argonaute Proteins/genetics , Carcinoma in Situ/genetics , Carcinoma in Situ/pathology , DEAD-box RNA Helicases/genetics , Epigenesis, Genetic , Humans , Male , Precancerous Conditions/pathology , ROC Curve , Seminoma/pathology , Sensitivity and Specificity , Testicular Neoplasms/pathology
16.
BMC Genomics ; 16: 954, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26573524

ABSTRACT

BACKGROUND: Dormant Mycobacterium tuberculosis bacilli are believed to play an important role in latent tuberculosis infection. Previously, we have demonstrated that cultivation of M. tuberculosis in K(+)-deficient medium resulted in generation of dormant cells. These bacilli were non-culturable on solid media (a key feature of dormant M. tuberculosis in vivo) and characterized by low metabolism and tolerance to anti-tuberculosis drugs. The dormant bacteria demonstrated a high potential to reactivation after K(+) reintroduction even after prolonged persistence under rifampicin. In this work, we studied the transcriptome and stability of transcripts in persisting dormant bacilli under arrest of mRNA de novo synthesis. RESULTS: RNA-seq-based analysis of the dormant non-culturable population obtained under rifampicin exposure revealed a 30-50-fold decrease of the total mRNA level, indicating global transcriptional repression. However, the analysis of persisting transcripts displayed a cohort of mRNA molecules coding for biosynthetic enzymes, proteins involved in adaptation and repair processes, detoxification, and control of transcription initiation. This 'dormant transcriptome' demonstrated considerable stability during M. tuberculosis persistence and mRNA de novo synthesis arrest. On the contrary, several small non-coding RNAs showed increased abundance on dormancy. Interestingly, M. tuberculosis entry into dormancy was accompanied by the cleavage of 23S ribosomal RNA at a specific point located outside the ribosome catalytic center. CONCLUSIONS: Dormant non-culturable M. tuberculosis bacilli are characterized by a global transcriptional repression. At the same time, the dormant bacilli retain low-abundant mRNAs, which are considerably stable during in vitro persistence, reflecting their readiness for translation upon early resuscitation steps. Increased abundance of non-coding RNAs on dormancy may indicate their role in the entry into and maintenance of M. tuberculosis dormant non-culturable state.


Subject(s)
Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/genetics , RNA Stability , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , Bacterial Proteins/genetics , Culture Techniques , Gene Expression Profiling , Models, Biological , Mycobacterium tuberculosis/cytology , Mycobacterium tuberculosis/drug effects , Phenotype , Potassium/pharmacology , RNA, Bacterial/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Ribosomal, 23S/chemistry , RNA, Ribosomal, 23S/genetics , RNA, Ribosomal, 23S/metabolism , Sequence Analysis, RNA
17.
Oncotarget ; 5(23): 11800-12, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25514461

ABSTRACT

ROS production and intracellular HSP70 levels were measured in human neutrophils for three age groups: young (20-59 years), elders (60-89 years) and nonagenarians (90 years and older). Elders showed higher levels of spontaneous intracellular ROS content compared with young and nonagenarian groups, which had similar intracellular ROS levels. Zymosan-induced (non-spontaneous) extracellular ROS levels were also similar for young and nonagenarians but were lower in elders. However, spontaneous extracellular ROS production increased continuously with age. Correlation analysis revealed positive relationships between HSP70 levels and zymosan-stimulated ROS production in the elder group. This was consistent with a promoting role for HSP70 in ROS-associated neutrophils response to pathogens. No positive correlation between ROS production and intracellular HSP70 levels was found for groups of young people and nonagenarians. In contrast, significant negative correlations of some ROS and HSP70 characteriscics were found for neutrophils from young people and nonagenarians. The observed difference in ROS and HSP70 correlations in elders and nonagenarians might be associated with an increased risk of mortality in older individuals less than 90 years old.


Subject(s)
Aging/metabolism , HSP70 Heat-Shock Proteins/metabolism , Neutrophils/metabolism , Reactive Oxygen Species/metabolism , Adult , Aged , Aged, 80 and over , Female , Flow Cytometry , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Young Adult
18.
PLoS One ; 9(11): e112528, 2014.
Article in English | MEDLINE | ID: mdl-25384072

ABSTRACT

PIWI family proteins have recently emerged as essential contributors in numerous biological processes including germ cell development, stem cell maintenance and epigenetic reprogramming. Expression of some of the family members has been shown to be elevated in tumors. In particular, PIWIL2 has been probed as a potential neoplasia biomarker in many cancers in humans. Previously, PIWIL2 was shown to be expressed in most tumours as a set of its shorter isoforms. In this work, we demonstrated the presence of its 60 kDa (PL2L60A) and 80 kDa (PL2L80A) isoforms in testicular cancer cell lines. We also ascertained the transcriptional boundaries of mRNAs and alternative promoter regions for these PIWIL2 isoforms. Further, we probed a range of testicular germ cell tumor (TGCT) samples and found PIWIL2 to be predominantly expressed as PL2L60A in most of them. Importantly, the levels of both PL2L60A mRNA and protein products were found to vary depending on the differentiation subtype of TGCTs, i.e., PL2L60A expression is significantly higher in undifferentiated seminomas and appears to be substantially decreased in mixed and nonseminomatous TGCTs. The higher level of PL2L60A expression in undifferentiated TGCTs was further validated in the model system of retinoic acid induced differentiation in NT2/D1 cell line. Therefore, both PL2L60A mRNA and protein abundance could serve as an additional marker distinguishing between seminomas and nonseminomatous tumors with different prognosis and therapy approaches.


Subject(s)
Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Neoplasms, Germ Cell and Embryonal/pathology , Spermatozoa/metabolism , Testicular Neoplasms/pathology , Cell Differentiation/drug effects , Cell Line, Tumor , Humans , Male , Neoplasms, Germ Cell and Embryonal/genetics , Neoplasms, Germ Cell and Embryonal/metabolism , Polyadenylation , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Splice Sites , RNA, Messenger/metabolism , Spermatozoa/cytology , Spermatozoa/pathology , Testicular Neoplasms/genetics , Testicular Neoplasms/metabolism , Transcriptome , Tretinoin/pharmacology
19.
Biomed Res Int ; 2014: 857329, 2014.
Article in English | MEDLINE | ID: mdl-24719892

ABSTRACT

The aim of this work was to get deeper insight into genetic factors involved in the adaptive divergence of closely related species, specifically two representatives of Baikal coregonids--Baikal whitefish (Coregonus baicalensis Dybowski) and Baikal omul (Coregonus migratorius Georgi)--that diverged from a common ancestor as recently as 10-20 thousand years ago. Using the Serial Analysis of Gene Expression method, we obtained libraries of short representative cDNA sequences (tags) from the brains of Baikal whitefish and omul. A comparative analysis of the libraries revealed quantitative differences among ~4% tags of the fishes under study. Based on the similarity of these tags with cDNA of known organisms, we identified candidate genes taking part in adaptive divergence. The most important candidate genes related to the adaptation of Baikal whitefish and Baikal omul, identified in this work, belong to the genes of cell metabolism, nervous and immune systems, protein synthesis, and regulatory genes as well as to DTSsa4 Tc1-like transposons which are widespread among fishes.


Subject(s)
Brain/metabolism , Gene Expression Regulation/physiology , Salmonidae/metabolism , Transcriptome/physiology , Animals , Gene Expression Profiling , Salmonidae/genetics , Species Specificity
20.
Epigenetics ; 6(9): 1078-84, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21814036

ABSTRACT

For a 140-kb human genome locus, an analysis of the distribution of Dam methylase accessible sites, DNase I sensitive and resistant regions, unmethylated CpG sites and acetylated histone H3 molecules was performed and compared with transcriptional activity of the genes within the locus. A direct correlation was found between the extent of Dam methylation and C5 cytosine (CpG) methylation. It was also demonstrated that promoter regions of all highly and moderately transcribed genes are highly accessible to methylation by Dam methylase. In contrast, promoters of non-transcribed genes showed a very low extent of Dam methylation. Promoter regions of non-transcribed genes were also highly CpG methylated, and the promoter and more distant 5'-regions of the housekeeping gene COX6B1 were substantially CpG-demethylated. Some highly Dam methylase accessible regions are present in the intergenic regions of the locus suggesting that the latter contain either unidentified non-coding transcripts or extended regulatory elements like locus control regions.


Subject(s)
Chromatin/chemistry , Mammals/genetics , Site-Specific DNA-Methyltransferase (Adenine-Specific)/chemistry , Acetylation , Animals , Chromatin/genetics , Chromatin Assembly and Disassembly , Chromatin Immunoprecipitation , Chromosomes, Human, Pair 19/chemistry , Chromosomes, Human, Pair 19/genetics , CpG Islands , DNA Methylation , Deoxyribonucleases, Type II Site-Specific/chemistry , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/genetics , Escherichia coli/chemistry , Escherichia coli/genetics , Genetic Loci , Genome, Human , HEK293 Cells , Histones/genetics , Histones/metabolism , Humans , Plasmids/chemistry , Plasmids/genetics , Promoter Regions, Genetic , Site-Specific DNA-Methyltransferase (Adenine-Specific)/genetics , Transcription, Genetic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...