Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 238, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38289417

ABSTRACT

T cells are broadly categorized into two groups, namely conventional and unconventional T cells. Conventional T cells are the most prevalent and well-studied subset of T cells. On the other hand, unconventional T cells exhibit diverse functions shared between innate and adaptive immune cells. During recent decades, γδ T cells have received attention for their roles in cancer immunity. These cells can detect various molecules, such as lipids and metabolites. Also, they are known for their distinctive ability to recognize and target cancer cells in the tumor microenvironment (TME). This feature of γδ T cells could provide a unique therapeutic tool to fight against cancer. Understanding the role of γδ T cells in TME is essential to prepare the groundwork to use γδ T cells for clinical purposes. Here, we provide recent knowledge regarding the role γδ T cell subsets in different cancer types.


Subject(s)
Neoplasms , T-Lymphocyte Subsets , Humans , Tumor Microenvironment
2.
Immunol Res ; 72(3): 430-437, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38153625

ABSTRACT

The indoleamine-2,3-dioxygenase (IDO) enzyme causes immunosuppressive consequences in the tumor microenvironment (TME). In addition, the role of aryl hydrocarbon receptor (AHR) in the TME is under discussion. The current study evaluated the role of the IDO and AHR blockers on cell migration, clonogenic, and IDO expression of murine breast cancer cells. The cell migration and clonogenic abilities of breast cancer cells are evaluated by wound­healing assay (cell migration assay) and Colony formation assay (clonogenic assay). Also, flow cytometry analysis was used to detect the IDO-positive breast cancer cells. The results showed that treating cells with a combination of IDO and AHR blockers dramatically reduced breast cancer cells' migration and clonogenic capacities. Treating cells with only AHR blockade suppressed the clonogenic rate. Since both IDO and AHR are involved in their complex molecular networks, blocking both IDO and AHR might cause alterations in their molecular networks resulting in diminishing the migration and clonogenic abilities of breast cancer cells. However, further investigations are required to confirm our findings within in vivo models as a novel therapy for breast cancer.


Subject(s)
Breast Neoplasms , Cell Movement , Indoleamine-Pyrrole 2,3,-Dioxygenase , Receptors, Aryl Hydrocarbon , Tumor Microenvironment , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Cell Movement/drug effects , Animals , Female , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Cell Line, Tumor , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Humans , Basic Helix-Loop-Helix Transcription Factors/metabolism
3.
Mol Biol Rep ; 50(7): 6133-6145, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37217614

ABSTRACT

Indoleamine-2,3 dioxygenase is a rate-limiting enzyme in the tryptophan catabolism in kynurenine pathways that has an immunosuppressive effect and supports cancer cells to evade the immune system in different cancer types. Diverse cytokines and pathways upregulate the production of indoleamine-2,3 dioxygenase enzymes in the tumor microenvironment and cause more production and activity of this enzyme. Ultimately, this situation results in anti-tumor immune suppression which is in favor of tumor growth. Several inhibitors such as 1-methyl-tryptophan have been introduced for indoleamine-2,3 dioxygenase enzyme and some of them are widely utilized in pre-clinical and clinical trials. Importantly at the molecular level, indoleamine-2,3 dioxygenase is positioned in a series of intricate signaling and molecular networks. Here, the main objective is to provide a focused view of indoleamine-2,3 dioxygenase enhancer pathways and propose further studies to cover the gap in available information on the function of indoleamine-2,3 dioxygenase enzyme in the tumor microenvironment.


Subject(s)
Neoplasms , Tryptophan , Humans , Tryptophan/metabolism , Tumor Microenvironment , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Kynurenine/metabolism , Neoplasms/metabolism
4.
Immunol Res ; 71(5): 679-686, 2023 10.
Article in English | MEDLINE | ID: mdl-37014514

ABSTRACT

Cancer is classified into metabolic and/or genetic disorders; notably, the tryptophan catabolism pathway is vital in different cancer types. Here, we focused on the interaction and molecular connection between the cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) receptor and indoleamine-2,3-dioxygenase (IDO) enzyme. To test the impact of the selected immunotherapies on breast cancer cell migration and cell survival, we used in vitro assays. Also, we test the impact of anti-CTLA-4 antibody on the IDO-positive cells. The results of cell migration and clonogenic assays showed that anti-CTLA-4 antibody reduces cancer cell migration and clonogenic abilities of murine breast cancer cells. In addition, the result of flow cytometry showed that the anti-CTLA-4 antibody did not change the percentage of IDO-positive cancer cells. Notably, administrating an IDO blocker, 1-Methyl-DL-tryptophan (1MT), reduces the efficiency of the antiCTLA-4 antibody. The enzymatic blocking of the IDO reduces the efficiency of the anti-CTLA-4 antibody on cell migration and clonogenic abilities suggesting that there is an inhibitory interaction at the molecular level between functions of CTLA-4 and IDO. It is unclear via which mechanism(s) IDO interacts with CTLA-4 signaling and also why blocking IDO makes disruption in CTLA-4 signaling in cancer cells. Indeed, evaluating the role of IDO in CTLA-4 signaling in cancer cells may assist in clarifying a poor response to CTLA-4 immunotherapies by some patients. Hence, further investigation of the molecular interaction between CTLA-4 and IDO might help to improve the efficiency of CTLA-4 immunotherapy.


Subject(s)
Breast Neoplasms , Humans , Animals , Mice , Female , Tryptophan/metabolism , CTLA-4 Antigen , Signal Transduction , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
5.
Hum Cell ; 36(4): 1225-1232, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36907978

ABSTRACT

In the tumor microenvironment, the function of T cells is a fate-changer for tumor progression. In the meantime, CD28 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are vital role players in the controlling activity of T cells as an activator and deactivator, respectively. In T cells in comparison to CD28, the molecular mechanism of CTLA-4 is unclear. In addition, despite the fact that most tumor cell types express CTLA-4, its role in tumor cells is not well understood and only few studies focused on the role of CTLA-4 signaling in tumor cells. It is illustrated that CTLA-4 signaling causes PD-L1 expression in tumor cells. However, numerous characteristics of CTLA-4 signaling in tumor cells are ambiguous and require to be described. In this article, we proposed that the CTLA-4 signaling during immunotherapy with anti-CTLA-4 antibodies may cause poor responses by patients. In addition, we attract attention to several fundamental questions regarding CTLA-4 signaling in tumor cells. Overall, the CTLA-4 signaling function and the related gaps about its role in tumor cells in the present review are challenged.


Subject(s)
CD28 Antigens , T-Lymphocytes, Cytotoxic , Humans , CD28 Antigens/metabolism , T-Lymphocytes, Cytotoxic/metabolism , CTLA-4 Antigen , Immunotherapy , Signal Transduction/genetics
6.
Crit Rev Oncol Hematol ; 163: 103368, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34051302

ABSTRACT

Hematopoietic stem cells are the most illustrious inhabitants of the bone marrow. Direct visualization of endogenous hematopoietic stem cells in this niche is essential to study their functions. Until recently this was not possible in live animals. Recent studies, using state-of-the-art technologies, including sophisticated in vivo inducible genetic approaches in combination with two-photon laser scanning microscopy, allow the follow-up of endogenous hematopoietic stem cells' behavior in their habitat. Strikingly, the new findings reveal that quiescent hematopoietic stem cells are more mobile than previously thought, and link their retained steady state within the niche to a mobile behavior. The arising knowledge from this research will be critical for the therapy of several hematological diseases. Here, we review recent progress in our understanding of hematopoietic stem cell biology in their niches.


Subject(s)
Bone Marrow , Stem Cell Niche , Animals , Bone Marrow Cells , Cell Division , Hematopoietic Stem Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL