Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Histol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916842

ABSTRACT

Chemical carcinogen-induced oxidative stress has a key role in cell signaling linked to the development of cancer. Oxidative stress leads to oxidative damage to cellular membranes, proteins, chromosomes and genetic material. It is thought that compounds like hesperidin with high antioxidant and anticancer potential can reduce development of cancer induced by chemical carcinogens via neutralizing their oxidative damages. We investigated protective effect of hesperidin against N-Ethyl-N-Nitrosourea (ENU)-induced neurotoxicity, congenital abnormalities and possible brain cancer after exposure of mice during pregnancy as model of glioma. The mice were divided to four groups; control (normal saline), ENU (40 mg/kg daily for three consecutive days from the 17th to the 19th of pregnancy), hesperidin (pretreated with 25 mg/kg for 30 consecutive days, before mating) + ENU and hesperidin alone. Developmental toxicity parameters (the number of pregnant mice, stillbirths, abortion, live and dead offspring), behavioral tests (novel object recognition, open field and elevated plus maze) were performed. Moreover, the activity of butrylcholinesterase and acetylcholinesterase enzymes, oxidative markers and histopathological abnormalities were detected in brain tissue. Our data showed that conversely, the pretreatment of hesperidin reduces various degrees of developmental toxicity, neurobehavioral dysfunction, neurotoxicity, oxidative stress and histopathological abnormalities induced by ENU as a neurotoxic and carcinogenic agent in the next generation. In conclusion, pre-mating exposure with hesperidin may open new avenues for prevention of primary brain cancer in next generation and could be valuable for enhancing the antioxidant defense and minimizing the developmental and neurotoxicity of DNA alkylating agents.

2.
Article in English | MEDLINE | ID: mdl-38334825

ABSTRACT

Recent evidence suggests the mechanistic role of mitochondria and oxidative stress in the development of celecoxib-induced cardiotoxicity. On the other, it has reported the positive effects of vitamin D on oxidative stress and the maintenance of mitochondrial functions. This current study examined the cardiac effects of celecoxib, doxorubicin, vitamin D, and a combination of them in rats. The effect of 10 days of celecoxib (100 mg/kg/day), doxorubicin (2.5 mg/kg), vitamin D (60,000 U/kg), and their combination was studied on cardiac function according to serum lactate dehydrogenase (LDH), creatine kinase (CK), glutathione (GSH), and malondialdehyde (MDA) levels as well as mitochondrial succinate dehydrogenases (SDH) activity, reactive oxygen species (ROS) production, mitochondrial swelling, and mitochondrial membrane potential (MMP). Results showed that celecoxib and its combination with doxorubicin led to abnormality in paws and limbs, increased pressure in the eyes, blindness and animal death (in about 75% of the animals under study). Moreover, celecoxib and its combination with doxorubicin significantly increased cardiotoxicity biomarkers, oxidative stress markers (GSH and MDA), and mitochondrial toxicity parameters (SDH, ROS formation, MMP collapse, mitochondrial swelling). However, the combination of vitamin D with celecoxib and celecoxib + doxorubicin caused a significant reversal of deformity in paws and limbs, increased pressure in the eye, blindness, and animal death, as well as cardiotoxicity, oxidative stress, and mitochondrial parameters. This study proved for the first time the beneficial effect of vitamin D on celecoxib-induced cardiotoxicity, which is aggravated in the presence of doxorubicin through the maintenance of mitochondrial functions and its antioxidant potential.

3.
J Biochem Mol Toxicol ; 38(1): e23570, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37929796

ABSTRACT

Mitochondrial toxicity has been shown to contribute to a variety of organ toxicities such as, brain, heart, kidney, and liver. Ifosfamide (IFO) as an anticancer drug, is associated with increased risk of neurotoxicity, cardiotoxicity nephrotoxicity, hepatotoxicity, and hemorrhagic cystitis. The aim of this study was to evaluate the direct effect of IFO on isolated mitochondria obtained from the rat brain, heart, kidney, and liver. Mitochondria were isolated with mechanical lysis and differential centrifugation from different organs and treated with various concentrations of IFO. Using biochemical and flowcytometry assays, we evaluated mitochondrial succinate dehydrogenase (SDH) activity, mitochondrial swelling, lipid peroxidation, reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP). Our data showed that IFO did not cause deleterious alterations in mitochondrial functions, mitochondrial swelling, lipid peroxidation ROS formation, and MMP collapse in mitochondria isolated from brain, heart, kidney, and liver. Altogether, the data showed that IFO is not directly toxic in mitochondria isolated from brain, heart, kidney, and liver. This study proved that mitochondria alone does not play the main role in the toxicity of IFO, and suggests to reduce the toxicity of this drug, other pathways resulting in the production of toxic metabolites should be considered.


Subject(s)
Ifosfamide , Oxidative Stress , Rats , Animals , Ifosfamide/toxicity , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Kidney , Membrane Potential, Mitochondrial
4.
Environ Toxicol ; 35(10): 1114-1124, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32432806

ABSTRACT

Apart from the anticancer, antioxidant, anti-inflammatory effects, and inhibition of aromatase, chrysin is involved in the protection of cardiovascular disorders. Cardiovascular complications are the main cause of death induced by aluminum phosphide (AlP) which is related to oxidative stress and mitochondrial damages. For this purpose, we investigated the effect of chrysin as an antioxidant and mitochondrial protective agent against AlP-induced toxicity in isolated cardiomyocytes and mitochondria obtained from rat heart ventricular. Using by biochemical and flow cytometry, cell viability, reactive oxygen species (ROS) formation, mitochondria membrane potential (MMP), lysosomal membrane integrity, malondialdehyde (MDA) content, and glutathione (GSH) and oxidized glutathione (GSSG) content were measured in isolated cardiomyocytes. Also, mitochondrial toxicity parameters such as mitochondrial NADH/succinate dehydrogenase activity, mitochondrial swelling, ROS formation, MMP collapse, and lipid peroxidation were analyzed in isolated mitochondria. Our results showed that the administration of chrysin (up to 10 µM) efficiently decreased (P < 0.05) cytotoxicity, oxidative, lysosomal, and mitochondrial damages induced by AlP, in isolated cardiomyocytes. Also, our finding in isolated mitochondria showed that chrysin (up to 10 µM) significantly (P < 0.05) decreased AlP-induced mitochondrial toxicity. These findings demonstrated that chrysin as an antioxidant and mitochondrial protective agent exert protective effect in wild-type cardiomyocyte treated with AlP. It was concluded that chrysin significantly reduced the toxicity of AlP in isolated cardiomyocytes and mitochondria. Due to the very low toxicity of chrysin for humans, it could be a promising agent in treatment of AlP poisoning.


Subject(s)
Aluminum Compounds/toxicity , Flavonoids/pharmacology , Mitochondria, Heart/drug effects , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Phosphines/toxicity , Protective Agents/pharmacology , Animals , Cardiotoxicity , Cells, Cultured , Glutathione/metabolism , Humans , Lipid Peroxidation/drug effects , Lysosomes/metabolism , Male , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Heart/metabolism , Mitochondrial Swelling/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
5.
Drug Res (Stuttg) ; 70(7): 317-324, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32413916

ABSTRACT

The safety of diclofenac (DIC) use in clinical practice has been questioned because of adverse cardiovascular effects. Previous studies have indicated that DIC cause mitochondrial dysfunction and oxidative stress in heart mitochondria. The aim of this study was to investigate the protective effect of calcitriol against the mitochondrial toxicity potency of diclofenac in heart rat mitochondria. For this purpose, rat heart mitochondria were isolated with mechanical lysis and differential centrifugation. Then isolated mitochondria were pretreated with 3 different concentrations of calcitriol (2.5, 5 and 10 µM) for 5 min at 37°C, after which DIC (10 µg/ml) was added to promote deleterious effects on mitochondria. During 1 hour of incubation, using by flow cytometry and biochemical evaluations, the parameters of mitochondrial toxicity were evaluated. Our results showed that DIC (10 µg/ml) caused a significant decrease in succinate dehydrogenase (SDH) activity, mitochondrial membrane potential (MMP) collapse, and mitochondrial swelling, and a significant increase in reactive oxygen species (ROS) formation, lipid peroxidation (LP) and oxidative stress. Also, our results revealed that co-administration of calcitriol (5 and 10 µM) with diclofenac markedly ameliorates the mitochondrial toxicity effects in rat hart mitochondria. In this study, we showed that DIC impairs mitochondrial function and induces mitochondrial toxicity in rat heart isolated mitochondria, which were ameliorated by calcitriol. These findings suggest that calcitriol may be a preventive/therapeutic strategy for cardiotoxicity complications caused by DIC.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Calcitriol/pharmacology , Cardiotoxicity/prevention & control , Diclofenac/adverse effects , Mitochondria, Heart/drug effects , Animals , Calcitriol/therapeutic use , Cardiotoxicity/etiology , Cell Fractionation , Drug Evaluation, Preclinical , Male , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Heart/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...