Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Data ; 11(1): 1028, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300149

ABSTRACT

The functional traits of soil protists have been employed in ecological research to enhance comprehension of the underlying mechanisms of ecological processes. Among the numerous soil protists, testate amoebae emerge as a prominent and abundant group, playing a pivotal role in soil micro-food webs. Furthermore, they are regarded as valuable bioindicators for environmental monitoring and palaeoecological studies due to their sensitivity to environmental changes. We screened 372 testate amoebae species widely distributed across Northern Holarctic realm and collected trait data, representing the morphological and feeding characteristics of testate amoebae. The dataset would provide valuable basis for investigation of the functional diversity and ecological roles of testate amoebae, thus facilitating further research on soil protist communities and ecosystem dynamics.


Subject(s)
Amoeba , Soil , Ecosystem , Food Chain
2.
Biodivers Data J ; 12: e125582, 2024.
Article in English | MEDLINE | ID: mdl-38903961

ABSTRACT

Background: Testate amoebae are a polyphyletic group of unicellular eukaryotic organisms that are characterised by a rigid shell and inhabit mostly freshwater and terrestrial ecosystems. They are particularly abundant in peatlands, especially in Sphagnum-dominated biotopes. Peatland hydrology is the most important influence on testate amoebae communities. The good preservation of the shells in peat deposits and their response to hydrological regime changes are the principles for palaeohydrological reconstructions. Any changes in the water balance of mires should be expected to have far-reaching effects on biogeochemical cycles, productivity, carbon dioxide and methane exchange. New information: This paper presents a dataset (Darwin Core Archive - DwC-A) on the distribution of Sphagnum-dwelling testate amoebae in nine mires located in the forest-steppe subzone of the East European Plane. The dataset includes information about 86 taxa belonging to 29 genera and contains 3,123 occurrences of 49,874 individuals. The following environmental variables are provided: microtopography, oxidising and reducing potential, total mineralisation, substrate temperature, acidity, substrate wetness and water table depth. These data might be used for biogeographical and palaeoecological studies, including quantitative reconstructions.

3.
Nat Commun ; 13(1): 4959, 2022 08 24.
Article in English | MEDLINE | ID: mdl-36002465

ABSTRACT

High-latitude peatlands are changing rapidly in response to climate change, including permafrost thaw. Here, we reconstruct hydrological conditions since the seventeenth century using testate amoeba data from 103 high-latitude peat archives. We show that 54% of the peatlands have been drying and 32% have been wetting over this period, illustrating the complex ecohydrological dynamics of high latitude peatlands and their highly uncertain responses to a warming climate.


Subject(s)
Amoeba , Permafrost , Climate Change , Hydrology , Soil
4.
Ambio ; 50(11): 1896-1909, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33825155

ABSTRACT

The response of peatlands to climate change can be highly variable. Through understanding past changes we can better predict the response of peatlands to future climate change. We use a multi-proxy approach to reconstruct the surface wetness and carbon accumulation of the Mukhrino mire (Western Siberia), describing the development of the mire since peat formation in the early Holocene, around 9360 cal. year BP. The mire started as a rich fen which initiated after paludification of a spruce forest (probably in response to a wetter climate), while the Mukhrino mire progressed to ombrotrophic bog conditions (8760 cal. year BP). This transition coincided with the intensive development of mires in Western Siberia and was associated with active carbon accumulation (31 g m-2 year-1). The ecosystem underwent a change to a tree-covered state around 5860 cal. year BP, likely in response to warming and possible droughts and this accompanied low carbon accumulation (12 g m2 year-1). If the future climate will be warmer and wetter, then regional mires are likely to remain a carbon sink, alternatively, a reversion to the wooded state with reduced carbon sink strength is possible.


Subject(s)
Ecosystem , Taiga , Carbon Sequestration , Siberia , Soil
SELECTION OF CITATIONS
SEARCH DETAIL