Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 17468, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39080322

ABSTRACT

This research was carried out to predict daily streamflow for the Swat River Basin, Pakistan through four deep learning (DL) models: Feed Forward Artificial Neural Networks (FFANN), Seasonal Artificial Neural Networks (SANN), Time Lag Artificial Neural Networks (TLANN) and Long Short-Term Memory (LSTM) under two Shared Socioeconomic Pathways (SSPs) 585 and 245. Taylor Diagram, Random Forest, and Gradient Boosting techniques were used to select the best combination of General Circulation Models (GCMs) for Multi-Model Ensemble (MME) computation. MME was computed via the Random Forest technique for Maximum Temperature (Tmax), Minimum Temperature (Tmin), and precipitation for the aforementioned three techniques. The best MME for Tmax, Tmin, and precipitation was rendered by Compromise Programming. The DL models were trained and tested using observed precipitation and temperature as independent variables and discharge as dependent variables. The results of deep learning models were evaluated using statistical performance indicators such as root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE), and coefficient of determination (R2). The TLANN demonstrated superior performance compared to the other models based on RMSE, MSE, MAE, and R2 during training (65.25 m3/s, 4256.97 m3/s, 46.793 m3/s and 0.7978) and testing (72.06 m3/s, 5192.95 m3/s, 51.363 m3/s and 0.7443) respectively. Subsequently, TLANN was utilized to make predictions based on MME of SSP245 and SSP585 scenarios for future streamflow until the year 2100. These results can be used for planning, management, and policy-making regarding water resources projects in the study area.

2.
Sci Rep ; 14(1): 2323, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38282061

ABSTRACT

The present research employs new boosting-based ensemble machine learning models i.e., gradient boosting (GB) and adaptive boosting (AdaBoost) to predict the unconfined compressive strength (UCS) of geopolymer stabilized clayey soil. The GB and AdaBoost models were developed and validated using 270 clayey soil samples stabilized with geopolymer, with ground-granulated blast-furnace slag and fly ash as source materials and sodium hydroxide solution as alkali activator. The database was randomly divided into training (80%) and testing (20%) sets for model development and validation. Several performance metrics, including coefficient of determination (R2), mean absolute error (MAE), root mean square error (RMSE), and mean squared error (MSE), were utilized to assess the accuracy and reliability of the developed models. The statistical results of this research showed that the GB and AdaBoost are reliable models based on the obtained values of R2 (= 0.980, 0.975), MAE (= 0.585, 0.655), RMSE (= 0.969, 1.088), and MSE (= 0.940, 1.185) for the testing dataset, respectively compared to the widely used artificial neural network, random forest, extreme gradient boosting, multivariable regression, and multi-gen genetic programming based models. Furthermore, the sensitivity analysis result shows that ground-granulated blast-furnace slag content was the key parameter affecting the UCS.

SELECTION OF CITATIONS
SEARCH DETAIL