Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 542
Filter
1.
Cancer Immunol Immunother ; 73(11): 220, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39235609

ABSTRACT

BACKGROUND: The anti-PD-L1 antibody durvalumab has been approved for use in first-line advanced biliary duct cancer (ABC). So far, predictive biomarkers of efficacy are lacking. METHODS: ABC patients who underwent gemcitabine-based chemotherapy with or without durvalumab were retrospectively enrolled, and their baseline clinical pathological indices were retrieved from medical records. Overall (OS) and progression free survival (PFS) were calculated and analyzed. The levels of peripheral biomarkers from 48 patients were detected with assay kits including enzyme-linked immunosorbent assay. Genomic alterations in 27 patients whose tumor tissues were available were depicted via targeted next-generation sequencing. RESULTS: A total of 186 ABC patients met the inclusion criteria between January 2020 and December 2022 were finally enrolled in this study. Of these, 93 patients received chemotherapy with durvalumab and the rest received chemotherapy alone. Durvalumab plus chemotherapy demonstrated significant improvements in PFS (6.77 vs. 4.99 months; hazard ratio 0.65 [95% CI 0.48-0.88]; P = 0.005), but not OS (14.29 vs. 13.24 months; hazard ratio 0.91 [95% CI 0.62-1.32]; P = 0.608) vs. chemotherapy alone in previously untreated ABC patients. The objective response rate (ORR) in patients receiving chemotherapy with and without durvalumab was 19.1% and 7.8%, respectively. Pretreatment sPD-L1, CSF1R and OPG were identified as significant prognosis predictors in patients receiving durvalumab. ADGRB3 and RNF43 mutations were enriched in patients who responded to chemotherapy plus durvalumab and correlated with superior survival. CONCLUSION: This retrospective real-world study confirmed the clinical benefit of durvalumab plus chemotherapy in treatment-naïve ABC patients. Peripheral sPD-L1 and CSF1R are promising prognostic biomarkers for this therapeutic strategy. Presence of ADGRB3 or RNF43 mutations could improve the stratification of immunotherapy outcomes, but further studies are warranted to explore the underlying mechanisms.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Combined Chemotherapy Protocols , Bile Duct Neoplasms , Biomarkers, Tumor , Humans , Male , Female , Middle Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Retrospective Studies , Aged , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal/administration & dosage , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/mortality , Bile Duct Neoplasms/genetics , Adult , Prognosis
3.
Sex Med ; 12(4): qfae047, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39220342

ABSTRACT

Background: Premature ejaculation (PE) is linked with abnormal brain activity that is modifiable by electroacupuncture (EA). Aim: In this study we aimed to explore the central pathological mechanism underlying EA in treating PE. Methods: Six-week-old male Sprague-Dawley rats were divided into a PE group (n = 8) and a control group (n = 8) according to ejaculatory frequency during copulatory behavior. All rats underwent EA at the Zusanli acupoint (ST-36) for 4 weeks. Magnetic resonance imaging data were collected before and after EA. Outcomes: The behavioral parameters, plasma norepinephrine levels, fractional amplitude of low frequency fluctuation (fALFF), and regional homogeneity (ReHo) were evaluated. Results: The PE group ejaculated more times with shorter latency compared with controls. After EA, the ejaculation frequency of the PE group decreased, and the ejaculation latency period increased, with no changes observed in the control group. Norepinephrine levels were higher in the PE group than in the controls and were positively correlated with ejaculation frequency and negatively correlated with ejaculation latency. The PE group showed lower fALFF in the right striatum and higher ReHo in the brainstem compared with controls. After EA, controls showed decreased fALFF in the right striatum, left olfactory bulb, and dorsal fornix and increased ReHo in the right interpeduncular nucleus, as well as decreased ReHo in the left striatum, prelimbic system, right basal forebrain region, septal region, and olfactory bulb, while the model group exhibited increased fALFF in the right hypothalamic region, decreased fALFF in the left globus pallidum and right basal forebrain region and increased ReHo in the right interpeduncular nucleus, as well as decreased ReHo in the left striatum, olfactory bulb, basal forebrain region, dentate gyrus, right dysgranular insular cortex, and striatum. Compared with the controls after EA, the model group showed increased ReHo of the right hypothalamic region and decreased ReHo of the right dysgranular insular cortex. Clinical Implications: These findings might enhance the understanding of PE and contribute to new, targeted therapies for PE. Strengths and Limitations: The therapeutic effects might be achieved by EA inhibiting the activity in brain regions involved in ejaculatory behavior. However, the curative effect of acupuncture might be underestimated due to some curative effects of sham acupuncture used in the control group. Conclusion: In conclusion, the ejaculatory frequency of rats may be reduced and ejaculation latency could be extended by EA at ST-36, which might be achieved by the effects of this treatment on brain activity.

4.
Asian J Androl ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39177415

ABSTRACT

Peyronie's disease (PD) is a disorder characterized by fibrous plaque formation in the penile tissue that leads to curvature and complications in advanced stages. In this study, we aimed to compare four injectable induction agents for the establishment of a robust rat model of PD: transforming growth factor-ß1 (TGF-ß1), fibrin, sodium tetradecyl sulfate (STS) combined with TGF-ß1, and polidocanol (POL) combined with TGF-ß1. The results showed that injection of TGF-ß1 or fibrin into the tunica albuginea induced pathological endpoints without causing penile curvature. The STS + TGF-ß1 combination resulted in both histological and morphological alterations, but with a high incidence of localized necrosis that led to animal death. The POL + TGF-ß1 combination produced pathological changes and curvature comparable to STS + TGF-ß1 and led to fewer complications. In conclusion, fibrin, STS + TGF-ß1, and POL + TGF-ß1 all induced PD with a certain degree of penile curvature and histological fibrosis in rats. The POL + TGF-ß1 combination offered comparatively greater safety and clinical relevance and may have the greatest potential for PD research using model rats.

5.
Anal Chim Acta ; 1322: 343066, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39182988

ABSTRACT

For hepatocellular carcinoma (HCC), N-glycosylation has been proved to be widely involved in various aspects of the disease, including development, metastasis, subtyping, diagnosis and prognosis. The common practice is to discover biomarkers in situ of cancer occurrence (i.e., cancer vs. adjacent tissues) yet to clinically monitor in sera because of non-invasiveness. This study benchmarks N-glycoproteomics characterization of common differential tissue and serum N-glycoproteins of patients with HCC. Differential N-glycosylation in matched tissue and serum samples from the same patients were quantitatively characterized at the intact N-glycopeptide molecular level, and 29 common N-glycoproteins were found. Subcellular localization analysis was carried out to confirm the tissue originality. Secreted N-glycoprotein APOH was up-regulated, and transmembrane and intracellular N-glycoproteins including OSMR, GAT2, CSF-1 and MAGI3 were down-regulated.


Subject(s)
Carcinoma, Hepatocellular , Glycoproteins , Liver Neoplasms , Proteomics , Humans , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/blood , Liver Neoplasms/metabolism , Glycoproteins/blood , Glycoproteins/metabolism , Biomarkers, Tumor/blood , Glycosylation , Male , Middle Aged , Female , Benchmarking
6.
ACS Appl Mater Interfaces ; 16(34): 44590-44604, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39153190

ABSTRACT

Titanium and titanium alloys have the advantages of a low density and a close elastic modulus to natural bone, which can reduce the stress-shielding effect and become one of the first choices for human hard tissue replacement and repair. However, implant site infection is still one of the main reasons for implantation failure. In this paper, 2.5 wt % Ag element was added to Ti-15Mo to obtain a low modulus, and a surface anodization was applied to improve the surface biocompatibility. The elastic modulus, micromorphology, surface elemental valence, corrosion resistance, antimicrobial properties, and cytocompatibility were investigated by mechanical tests, scanning electron microscopy, X-ray photoelectron spectroscopy, electrochemical tests, inductively coupled plasma spectroscopy, plate counting method, and cellular tests. The experimental results showed that the anodized Ti-15Mo-2.5Ag sample exhibited an elastic modulus of 79 GPa, a strong corrosion resistance, a strong antimicrobial ability of ≥99.99%, and good biocompatibility. It was demonstrated that the formation of Ag2O on the surface and Ag ion release improved the antimicrobial properties and that the structural synergism of silver ions with micro- and nanostructures played an important role in promoting the early spreading of cells and improving the cytocompatibility.


Subject(s)
Silver , Titanium , Titanium/chemistry , Titanium/pharmacology , Silver/chemistry , Silver/pharmacology , Nanostructures/chemistry , Molybdenum/chemistry , Molybdenum/pharmacology , Alloys/chemistry , Alloys/pharmacology , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Materials Testing , Animals , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Surface Properties , Mice , Corrosion
7.
Trials ; 25(1): 535, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138581

ABSTRACT

BACKGROUND: In cardiac surgical procedures, patients carrying high-risk profiles are prone to encompass complicated cardiopulmonary bypass (CPB) separation. Intraoperative transesophageal echocardiography (TEE), a readily available tool, is utilized to detect cardiac structural and functional pathologies as well as to facilitate clinical management of CPB separation, especially in the episodes of hemodynamic compromise. However, the conventional TEE examination, always performed in a liberal fashion without any restriction of view acquisition, is relatively time-consuming; there appear its flaws in the context of critically severe status. We therefore developed the perioperative rescue transesophageal echocardiography (PReTEE), a simplified three-view TEE protocol consisting of midesophageal four chamber, midesophageal left ventricular long axis, and transgastric short axis. METHODS: This is a single-center and randomized controlled trial which will be implemented in Peking Union Medical College Hospital, Beijing, China. A total of 46 TEE scans are schemed to be performed by 6 operators participating in and randomly assigned to either the PReTEE or the conventional TEE group. This study is purposed to investigate whether the efficiency of discriminating leading causes of difficult CPB wean-off can be significantly improved via an abbreviated sequence of TEE views. The primary outcome of interest is the difference between the groups of PReTEE and the conventional TEE in the successful discrimination of etiologies in specified 120 s. Cox proportional hazards model will be further employed to calculate the outcome difference. DISCUSSION: The estimated results of this trial are oriented at verifying whether a simplified TEE exam sequence can improve the efficiency of etiologies discrimination during CPB separation in cardiac surgery. TRIAL REGISTRATION: ClinicalTrials.gov NCT05960552. Registered on 6 July 2023.


Subject(s)
Cardiac Surgical Procedures , Cardiopulmonary Bypass , Echocardiography, Transesophageal , Humans , Echocardiography, Transesophageal/methods , Cardiac Surgical Procedures/methods , Randomized Controlled Trials as Topic , Risk Factors , Male , Predictive Value of Tests
8.
ACS Omega ; 9(31): 33765-33772, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39130609

ABSTRACT

Sunitinib (SUN) is a first-line drug for the treatment of renal clear carcinoma cells by targeting receptor tyrosine kinases (RTK) on the cell membrane. However, the effective delivery of SUN to the cell membrane remains a significant challenge. In this study, we fabricated precisely structured DNA nanotapes with strong surface SUN adhesion, enabling RTK inhibition of renal clear carcinoma cells. In our design, the precisely assembled linear topological six-helical-bundle DNA origami serves as the framework, and positively charged chitosan is adsorbed onto the DNA origami surface, thereby forming DNA nanotapes. The SUN was efficiently loaded onto the surface of the DNA nanotapes by electrostatic interaction. We found that DNA nanotapes exhibit excellent stability in serum. Importantly, DNA nanotapes carrying SUN can achieve prolonged cell membrane retention and inhibit RTK, thereby enhancing cytotoxicity toward 786-0 cells. Taken together, this study provides a promising candidate platform for the efficient delivery of cell membrane receptor inhibitors in anticancer therapy.

9.
Heliyon ; 10(11): e32417, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961940

ABSTRACT

In order to comprehend the dissimilarities in tobacco quality between Canada and Yunnan, a comparison of the aroma components was conducted using GC-MS and HPLC analysis, coupled with orthogonal partial least squares discriminant analysis (OPLS-DA). The study revealed the detection of a total of 81 aroma components and 22 non-volatile components in both varieties of tobacco leaves. Specifically, there were 102 components of Canada tobacco leaves and 103 components of Yunnan tobacco leaves. Subsequently, a screening was performed on these two types of tobacco leaves, identifying 51 differential components, which accounted for approximately 49.5 % of the overall components detected. Among these, Canada tobacco exhibited a higher concentration of 22 components, comprising roughly 36.4 % of the total, which were primarily composed of semi-volatile organic acids and sesquiterpenes. On the other hand, Yunnan tobacco was characterized by a comparatively higher content of 43 components, constituting approximately 63.6 %, including fatty acid esters, phenols, diterpenes, sugars, and amino acids. Comparatively, Canada tobacco demonstrated elevated levels of fatty acids and sesquiterpenes, while the content of fatty acid esters and diterpenes was relatively lower. These distinctions in aroma components potentially contribute to the varied sensory aroma profiles exhibited by the two types of tobacco.

10.
Phys Chem Chem Phys ; 26(30): 20470-20482, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39027937

ABSTRACT

Direct conversion of syngas into ethanol is an attractive process because of its short route and high-added value, but remains an enormous challenge due to the low selectivity caused by unclear active sites. Here, the Cu(111) supported N-modified graphene fragments C13-mNm/Cu(111) (m = 0-2) are demonstrated to be an efficient catalyst for fabricating ethanol from syngas and methanol. Our results suggest that the Cu-carbon interaction not only facilitates CO activation, but also significantly affects the adsorption stability of C2 intermediates and finally changes the fundamental reaction mechanism. The impeded hydrogenation performance of C13/Cu(111) due to the introduced Cu-carbon interaction is dramatically improved by N-doping. Multiple analyses reveal that the promoted electron transfer and the enhanced electron endowing ability of C13-mNm/Cu(111) (m = 1-2) to the co-adsorbed CH3CHxOH (x = 0-1) and H are deemed to be mainly responsible for the remarkable enhancement in hydrogenation ability. From the standpoint of the frontier molecular orbital, the decreased HOMO-LUMO gap and the increased overlap extent of HOMO and LUMO with the doping of N atoms also further verify the more facile hydrogenation reactions. Clearly, the Cu-carbon interaction through N-modification is of critical importance in ethanol formation. The final hydrogenation reaction during ethanol formation is deemed to be the rate-controlling step. The insights gained here could shed new light on the nature of Cu-carbon interaction in carbon material modified Cu-based catalysts for ethanol synthesis, which could be extended to design and modify other metal-carbon catalysts.

11.
J Colloid Interface Sci ; 674: 873-883, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38955018

ABSTRACT

Lithium-sulfur batteries (LSBs) hold promise as the next-generation lithium-ion batteries (LIBs) due to their ultra-high theoretical capacity and remarkable cost-efficiency. However, these batteries suffer from the serious shuttle effect, challenging their practical application. To address this challenge, we have developed a unique interlayer (HCON@CNWF) composed of hollow cerium oxide nanorods (CeO2) anchored to carbonized non-woven viscose fabric (CNWF), utilizing a straightforward template method. The prepared interlayer features a three-dimensional (3D) conductive network that serves as a protective barrier and enhances electron/ion transport. Additionally, the CeO2 component effectively chemisorbs and catalytically transforms lithium polysulfides (LiPSs), offering robust chemisorption and activation sites. Moreover, the unique porous structure of the HCON@CNWF not only physically adsorbs LiPSs but also provides ample space for sulfur's volume expansion, thus mitigating the shuttle effect and safeguarding the electrode against damage. These advantages collectively contribute to the battery's outstanding electrochemical performance, notably in retaining a reversible capacity of 80.82 % (792 ± 5.60 mAh g-1) of the initial value after 200 charge/discharge cycles at 0.5C. In addition, the battery with HCON@CNWF interlayer has excellent electrochemical performance at high sulfur loading (4 mg cm-2) and low liquid/sulfur ratio (7.5 µL mg-1). This study, thus, offers a novel approach to designing advanced interlayers that can enhance the performance of LSBs.

12.
Molecules ; 29(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998960

ABSTRACT

The United Nations proposed the Sustainable Development Goals with the aim to make human settlements in cities resilient and sustainable. The excessive discharge of urban waste including sludge and garden waste can pollute groundwater and lead to the emission of greenhouse gases (e.g., CH4). The proper recycling of urban waste is essential for responsible consumption and production, reducing environmental pollution and addressing climate change issues. This study aimed to prepare biochar with high adsorption amounts of iodine using urban sludge and peach wood from garden waste. The study was conducted to examine the variations in the mass ratio between urban sludge and peach wood (2/1, 1/1, and 1/2) as well as pyrolysis temperatures (300 °C, 500 °C, and 700 °C) on the carbon yield and adsorption capacities of biochar. Scanning electron microscopy, Brunauer-Emmett-Teller analysis, Fourier transform infrared spectrometry, powder X-ray diffraction, and elemental analysis were used to characterize the biochar produced at different pyrolysis temperatures and mass ratios. The results indicate that the carbon yield of biochar was found to be the highest (>60%) at a pyrolysis temperature of 300 °C across different pyrolysis temperatures. The absorbed amounts of iodine in the aqueous solution ranged from 86 to 223 mg g-1 at a mass ratio of 1:1 between urban sludge and peach wood, which were comparably higher than those observed in other mass ratios. This study advances water treatment by offering a cost-effective method by using biochar derived from the processing of urban sludge and garden waste.


Subject(s)
Charcoal , Iodine , Pyrolysis , Sewage , Charcoal/chemistry , Iodine/chemistry , Sewage/chemistry , Adsorption , Temperature , Gardens , Spectroscopy, Fourier Transform Infrared , Cities
13.
Clin Transl Oncol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872053

ABSTRACT

BACKGROUND: TP53 is a frequently mutated oncogene within non-small cell lung cancer (NSCLC). However, the clinical and prognostic significance of co-mutations in TP53 in patients with advanced NSCLC has not been fully elucidated. METHODS: A total of 174 patients with advanced NSCLC were enrolled in this study. All patients were subjected to sequencing analysis of tumor-related genes and information such as PD-L1 expression, TMB, and co-mutation changes were collected. Patients were categorized into TP53 mutant and TP53 wild-type groups according to their TP53 mutation status and then statistically analyzed. RESULTS: TP53 mutations were the most common among all patients, accounting for 56.32%, followed by epidermal growth factor receptor mutations at 48.27%. The most common mutation sites in the TP53 mutation group were exons 5-8.TP53 mutations were significantly associated with PD-L1 and TMB levels. Univariate Cox analysis showed that gender and EGFR mutation affected the prognosis of TP53-mutated NSCLC patients, and multivariate Cox regression analysis identified EGFR mutation as an independent risk factor. The OS of NSCLC patients in the TP53 mutation group was significantly shorter than that of the TP53wt group. Survival curves in the TP53/EGFR combined mutation group showed that patients with combined EGFR mutation had a lower survival rate. DISCUSSION: TP53 mutations are associated with different clinical indicators and have important implications in clinical treatment. TP53 is a poor prognostic factor for NSCLC patients, and TP53/EGFR co-mutation will affect the survival time of patients. TP53/EGFR co-mutation may be a new prognostic marker for NSCLC.

14.
Heliyon ; 10(9): e30458, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38720732

ABSTRACT

Adsorption-desorption experiments of three heavy metal ions (i.e., lead, copper, cadmium) in silty soil were carried out at different temperatures, and the microscopic characteristics of silty soil loaded with the three heavy metal ions were analyzed. A one-dimensional soil column was used to discuss the influences of heavy metal ion types and concentrations on the soil moisture distribution and the migration level of different heavy metal ions, especially during the dynamic change process from an unsaturated state to a saturated state. Studies show that the adsorption of heavy metal ions onto silty soil is closely related to the mineral composition and functional groups in silty soil. In addition to physical adsorption, the adsorption of heavy metal ions is closely related to the hydrolysis reaction of mineral components such as kaolinite, calcite, dolomite, plagioclase and quartz. Under constant temperature, the types and concentrations of heavy metal ions play an important role in the moisture migration of unsaturated soil. In the presence of heavy metal ions, the penetration of lead ions is the greatest, followed by copper ions and then cadmium ions. The greater the ion concentration is, the stronger the penetration of heavy metal ions in silty soils.

15.
J Nanobiotechnology ; 22(1): 261, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760744

ABSTRACT

Delayed repair of fractures seriously impacts patients' health and significantly increases financial burdens. Consequently, there is a growing clinical demand for effective fracture treatment. While current materials used for fracture repair have partially addressed bone integrity issues, they still possess limitations. These challenges include issues associated with autologous material donor sites, intricate preparation procedures for artificial biomaterials, suboptimal biocompatibility, and extended degradation cycles, all of which are detrimental to bone regeneration. Hence, there is an urgent need to design a novel material with a straightforward preparation method that can substantially enhance bone regeneration. In this context, we developed a novel nanoparticle, mPPTMP195, to enhance the bioavailability of TMP195 for fracture treatment. Our results demonstrate that mPPTMP195 effectively promotes the differentiation of bone marrow mesenchymal stem cells into osteoblasts while inhibiting the differentiation of bone marrow mononuclear macrophages into osteoclasts. Moreover, in a mouse femur fracture model, mPPTMP195 nanoparticles exhibited superior therapeutic effects compared to free TMP195. Ultimately, our study highlights that mPPTMP195 accelerates fracture repair by preventing HDAC4 translocation from the cytoplasm to the nucleus, thereby activating the NRF2/HO-1 signaling pathway. In conclusion, our study not only proposes a new strategy for fracture treatment but also provides an efficient nano-delivery system for the widespread application of TMP195 in various other diseases.


Subject(s)
Cell Differentiation , Histone Deacetylases , Mesenchymal Stem Cells , Nanoparticles , Animals , Mice , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Nanoparticles/chemistry , Cell Differentiation/drug effects , Histone Deacetylases/metabolism , NF-E2-Related Factor 2/metabolism , Mice, Inbred C57BL , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoblasts/drug effects , Signal Transduction/drug effects , Heme Oxygenase-1/metabolism , Male , Bone Regeneration/drug effects , Osteogenesis/drug effects , Cell Nucleus/metabolism , Fracture Healing/drug effects , Humans , Membrane Proteins
16.
J Agric Food Chem ; 72(23): 13099-13110, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38807079

ABSTRACT

Whole-grain foods are rich in bound polyphenols (BPs) whose health benefits were largely underestimated compared with free polyphenols. We first found that DFBP (dietary fiber with BPs from oat bran) exhibited stronger colonic antioxidant activities than DF. 16S rRNA sequencing showed that DFBP selectively changed gut microbial composition, which reciprocally released BPs from DFBP. Released polyphenols from DFBP reduced excessive colonic ROS and exhibited colonic antioxidant activities via the ROS/Akt/Nrf2 pathway revealed by transcriptome and western blot analysis. Colonic antioxidant activities of DFBP mediated by gut microbiota were next proven by treating mice with broad-spectrum antibiotics. Next, Clostridium butyricum, as a distinguished bacterium after DFBP intervention, improved colonic antioxidant capacities synergistically with DFBP in HFD-fed mice. This was explained by the upregulated mRNA expression of esterase, and cellulase of Clostridium butyricum participated in releasing BPs. Our results would provide a solid basis for explaining the health benefits of whole grains.


Subject(s)
Avena , Colon , Diet, High-Fat , Dietary Fiber , Gastrointestinal Microbiome , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Oxidative Stress , Polyphenols , Proto-Oncogene Proteins c-akt , Reactive Oxygen Species , Gastrointestinal Microbiome/drug effects , Animals , Mice , Polyphenols/pharmacology , Polyphenols/chemistry , Polyphenols/administration & dosage , Polyphenols/metabolism , Avena/chemistry , Avena/metabolism , Oxidative Stress/drug effects , Dietary Fiber/metabolism , Dietary Fiber/pharmacology , Male , Diet, High-Fat/adverse effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Colon/metabolism , Colon/microbiology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Reactive Oxygen Species/metabolism , Humans , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/drug effects
17.
Signal Transduct Target Ther ; 9(1): 121, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755119

ABSTRACT

Anti-PD-1 antibodies are a favorable treatment for relapsed or refractory extranodal natural killer T cell lymphoma (RR-ENKTL), however, the complete response (CR) rate and the duration of response (DOR) need to be improved. This phase 1b/2 study investigated the safety and efficacy of sintilimab, a fully human anti-PD-1 antibody, plus chidamide, an oral subtype-selective histone deacetylase inhibitor in 38 patients with RR-ENKTL. Expected objective response rate (ORR) of combination treatment was 80%. Patients received escalating doses of chidamide, administered concomitantly with fixed-dose sintilimab in 21-days cycles up to 12 months. No dose-limiting events were observed, RP2D of chidamide was 30 mg twice a week. Twenty-nine patients were enrolled in phase 2. In the intention-to-treat population (n = 37), overall response rate was 59.5% with a complete remission rate of 48.6%. The median DOR, progression-free survival (PFS), and overall survival (OS) were 25.3, 23.2, and 32.9 months, respectively. The most common grade 3 or higher treatment-emergent adverse events (AEs) were neutropenia (28.9%) and thrombocytopenia (10.5%), immune-related AEs were reported in 18 (47.3%) patients. Exploratory biomarker assessment suggested that a combination of dynamic plasma ctDNA and EBV-DNA played a vital prognostic role. STAT3 mutation shows an unfavorable prognosis. Although outcome of anticipate ORR was not achieved, sintilimab plus chidamide was shown to have a manageable safety profile and yielded encouraging CR rate and DOR in RR-ENKTL for the first time. It is a promising therapeutic option for this population.


Subject(s)
Aminopyridines , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Benzamides , Histone Deacetylase Inhibitors , Lymphoma, Extranodal NK-T-Cell , Humans , Male , Female , Middle Aged , Benzamides/administration & dosage , Benzamides/therapeutic use , Benzamides/adverse effects , Aged , Lymphoma, Extranodal NK-T-Cell/drug therapy , Lymphoma, Extranodal NK-T-Cell/pathology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylase Inhibitors/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Adult , Aminopyridines/administration & dosage , Aminopyridines/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology
18.
Opt Express ; 32(7): 12092-12103, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38571042

ABSTRACT

To achieve an autonomously controlled reconfigurable microwave waveform generator, this study proposes and demonstrates a self-adjusting synthesis method based on a photonic delay reservoir computer with ring resonator. The proposed design exploits the ring resonator to configure the reservoir, facilitating a nonlinear transformation and providing delay space. A theoretical analysis is conducted to explain how this configuration addresses the challenges of microwave waveform generation. Considering the generalization performance of waveform generation, the simulations demonstrate the system's capability to produce six distinct representative waveforms, all exhibiting a highly impressive root mean square error (RMSE) of less than 1%. To further optimize the system's flexibility and accuracy, we explore the application of various artificial intelligence algorithms at the reservoir computer's output layer. Furthermore, our investigation delves deeply into the complexities of system performance, specifically exploring the influence of reservoir neurons and micro-ring resonator parameters on calculation performance. We also delve into the scalability of reservoirs, considering both parallel and cascaded arrangements.

19.
Ying Yong Sheng Tai Xue Bao ; 35(3): 713-720, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646759

ABSTRACT

The problem of soil barrier caused by excessive accumulation of nitrogen is common in continuous cropping soil of facility agriculture. To investigate the modulating effects of biochar amendment on soil nitrogen transformation in greenhouse continuous cropping systems, we conducted a pot experiment with two treatments, no biochar addition (CK) and 5% biochar addition (mass ratio). We analyzed the effects of biochar addition on soil microbial community structure, abundances of genes functioning in nitrogen cycling, root growth and nitrogen metabolism-related genes expressions of cucumber seedlings. The results showed that biochar addition significantly increased plant height, root dry mass, total root length, root surface area, and root volume of cucumber seedlings. Rhizosphere environment was improved, which enhanced root nitrogen absorption by inducing the up-regulation of genes expressions related to plant nitrogen metabolism. Biochar addition significantly increased soil microbial biomass nitrogen, nitrate nitrogen, and nitrite nitrogen contents. The abundances of bacteria that involved in nitrogen metabolism, including Proteobacteria, Cyanobacteria, and Rhizobiales (soil nitrogen-fixing bacteria), were also significantly improved in the soil. The abundances of genes functioning in soil nitrification and nitrogen assimilation reduction, and the activities of enzymes involved in nitrogen metabolisms such as hydroxylamine dehydrogenase, nitronate monooxygenase, carbonic anhydrase were increased. In summary, biochar addition improved soil physicochemical properties and microbial community, and affected soil nitrogen cycling through promoting nitrification and nitrogen assimilation. Finally, nitrogen adsorption capacity and growth of cucumber plant was increased.


Subject(s)
Charcoal , Cucumis sativus , Nitrogen , Plant Roots , Seedlings , Soil , Cucumis sativus/growth & development , Cucumis sativus/metabolism , Nitrogen/metabolism , Soil/chemistry , Seedlings/growth & development , Seedlings/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Soil Microbiology , Agriculture/methods , Rhizosphere
20.
iScience ; 27(4): 109518, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38585662

ABSTRACT

Herbivorous insects have evolved metabolic strategies to survive the challenges posed by plant secondary metabolites (SMs). This study reports an exploration of SMs present in pears, which serve as a defense against invasive Cydia pomonella and native Grapholita molesta and their counter-defense response. The feeding preferences of fruit borers are influenced by the softening of two pear varieties as they ripen. The content of SMs, such as quercetin and rutin, increases due to feeding by fruit borers. Notably, quercetin levels only increase after C. pomonella feeding. The consumption of SMs affects the growth of fruit borer population differently, potentially due to the activation of P450 genes by SMs. These two fruit borers are equipped with specific P450 enzymes that specialize in metabolizing quercetin and rutin, enabling them to adapt to these SMs in their host fruits. These findings provide valuable insights into the coevolution of plants and herbivorous insects.

SELECTION OF CITATIONS
SEARCH DETAIL