Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 686
Filter
1.
J Transl Med ; 22(1): 734, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103891

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) is associated with increased risk of stroke and mortality. It has been reported that the process of atrial fibrosis was regulated by ß-catenin in rats with AF. However, pathophysiological mechanisms of this process in human with AF remain unclear. This study aims to investigate the possible mechanisms of ß-catenin in participating in the atrial fibrosis using human right atrial appendage (hRAA) tissues . METHODS: We compared the difference of ß-catenin expression in hRAA tissues between the patients with AF and sinus rhythm (SR). The possible function of ß-catenin in the development of AF was also explored in mice and primary cells. RESULTS: Firstly, the space between the membrane of the gap junctions of cardiomyocytes was wider in the AF group. Secondly, the expression of the gap junction function related proteins, Connexin40 and Connexin43, was decreased, while the expression of ß-catenin and its binding partner E-cadherin was increased in hRAA and cardiomyocytes of the AF group. Thirdly, ß-catenin colocalized with E-cadherin on the plasma membrane of cardiomyocytes in the SR group, while they were dissociated and accumulated intracellularly in the AF group. Furthermore, the expression of glycogen synthase kinase 3ß (GSK-3ß) and Adenomatous Polyposis Coli (APC), which participated in the degradation of ß-catenin, was decreased in hRAA tissues and cardiomyocytes of the AF group. Finally, the development of atrial fibrosis and AF were proved to be prevented after inhibiting ß-catenin expression in the AF model mice. CONCLUSIONS: Based on human atrial pathological and molecular analyses, our findings provided evidence that ß-catenin was associated with atrial fibrosis and AF progression.


Subject(s)
Atrial Fibrillation , Fibrosis , Heart Atria , Myocytes, Cardiac , beta Catenin , Humans , Atrial Fibrillation/pathology , Atrial Fibrillation/metabolism , beta Catenin/metabolism , Animals , Heart Atria/metabolism , Heart Atria/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Male , Glycogen Synthase Kinase 3 beta/metabolism , Cadherins/metabolism , Gap Junctions/metabolism , Middle Aged , Mice , Female , Connexin 43/metabolism , Mice, Inbred C57BL , Aged
3.
Front Oncol ; 14: 1351393, 2024.
Article in English | MEDLINE | ID: mdl-39114311

ABSTRACT

Objective: By utilizing machine learning, we can identify genes that are associated with recurrence, invasion, and tumor stemness, thus uncovering new therapeutic targets. Methods: To begin, we obtained a gene set related to recurrence and invasion from the GEO database, a comprehensive gene expression database. We then employed the Weighted Gene Co-expression Network Analysis (WGCNA) to identify core gene modules and perform functional enrichment analysis on them. Next, we utilized the random forest and random survival forest algorithms to calculate the genes within the key modules, resulting in the identification of three crucial genes. Subsequently, one of these key genes was selected for prognosis analysis and potential drug screening using the Kaplan-Meier tool. Finally, in order to examine the role of CDC20 in lung adenocarcinoma (LUAD), we conducted a variety of in vitro and in vivo experiments, including wound healing assay, colony formation assays, Transwell migration assays, flow cytometric cell cycle analysis, western blotting, and a mouse tumor model experiment. Results: First, we collected a total of 279 samples from two datasets, GSE166722 and GSE31210, to identify 91 differentially expressed genes associated with recurrence, invasion, and stemness in lung adenocarcinoma. Functional enrichment analysis revealed that these key gene clusters were primarily involved in microtubule binding, spindle, chromosomal region, organelle fission, and nuclear division. Next, using machine learning, we identified and validated three hub genes (CDC45, CDC20, TPX2), with CDC20 showing the highest correlation with tumor stemness and limited previous research. Furthermore, we found a close association between CDC20 and clinical pathological features, poor overall survival (OS), progression-free interval (PFI), progression-free survival (PFS), and adverse prognosis in lung adenocarcinoma patients. Lastly, our functional research demonstrated that knocking down CDC20 could inhibit cancer cell migration, invasion, proliferation, cell cycle progression, and tumor growth possibly through the MAPK signaling pathway. Conclusion: CDC20 has emerged as a novel biomarker for monitoring treatment response, recurrence, and disease progression in patients with lung adenocarcinoma. Due to its significance, further research studying CDC20 as a potential therapeutic target is warranted. Investigating the role of CDC20 could lead to valuable insights for developing new treatments and improving patient outcomes.

4.
J Hazard Mater ; 478: 135570, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39173368

ABSTRACT

Urban regions are suggested to be the main source of microplastic pollution in rivers. Thus, we investigated the spatiotemporal distribution of microplastics in the surface water of the Lanzhou section of the Yellow River in a semiarid region and the contributions of typical sources. The average concentration of microplastics in the surface water of the river was 0.98 particles (p) L-1. The daily quantity flux and mass flux were 3.63 × 109 p d-1 and 95.38 kg d-1, respectively. Most of the microplastics in the river were fibers and fragments, composed of polyethylene terephthalate, polyamide, polypropylene and polyethylene. A large quantity and mass of microplastics were found in the high-flow period of the river. The hotspots of microplastic pollution were residential and tourist reaches. The spatial distribution of microplastics was influenced by anthropogenic factors. However, the main factor influencing the temporal distribution of microplastics was precipitation seasonality. Most of the microplastics in the surface water originated from drainage ditches. The direct contribution of microplastics from atmospheric deposition was also considerable. Our results suggest that the contribution of microplastics from atmospheric deposition to urban rivers is worthy of attention.

5.
J Anim Sci Technol ; 66(4): 726-739, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39165747

ABSTRACT

This study was conducted to investigate whether lysophosphatidic acid (LPA) could improve the development of porcine somatic cell nuclear transfer (SCNT) embryos. Porcine SCNT-derived embryos were cultured in chemically defined polyvinyl alcohol (PVA)-based porcine zygote medium (PZM)-4 without or with LPA, and the development, cell proliferation potential, apoptosis, and expression levels of pluripotent markers were evaluated. LPA significantly increased the rates of cleavage and blastocyst formation compared to those seen in the LPA un-treatment (control) group. The expression levels of embryonic development-related genes (IGF2R, PCNA and CDH1) were higher (p < 0.05) in the LPA treatment group than in the control group. LPA significantly increased the numbers of total, inner cell mass and EdU (5-ethynyl-2'-deoxyuridine)-positive cells in porcine SCNT blastocysts compared to those seen in the control group. TUNEL assay showed that LPA significantly reduced the apoptosis rate in porcine SCNT-derived embryos; this was confirmed by decreases (p < 0.05) in the expression levels of pro-apoptotic genes, BAX and CASP3, and an increase (p < 0.05) in the expression level of the anti-apoptotic gene, BCL2L1. In addition, LPA significantly increased Oct4 expression at the gene and protein levels. Together, our data suggest that LPA improves the quality and development of porcine SCNT-derived embryos by reducing apoptosis and enhancing cell proliferation and pluripotency.

6.
Transl Oncol ; 49: 102095, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39167955

ABSTRACT

BACKGROUND: The immune status is closely linked to cancer progression, metastasis, and prognosis. Lipid metabolism, crucial for reshaping immune status, plays a key role in regulating the advancement of lung adenocarcinoma (LUAD) and deserves further investigation. METHODS: This study classifies LUAD patients into different immune subtypes based on lipid metabolism-related genes and compares the clinical characteristics among these subtypes. Single-multi COX analysis screens out key genes related to prognosis, and a risk feature and prognostic model are constructed. Cell cloning, scratch, transwell, western blotting and flow cytometry cell cycle analysis to detect the function of key genes. A subcutaneous tumor animal model is used to investigate the in vivo function and molecular mechanisms of key genes. RESULTS: LUAD patients are classified into three immune subtypes, among which C3 subtype has lower immune status and higher frequency of gene mutations, and show lower immunoreactivity in immunotherapy. COX analysis identified a prognostic model for four lipid metabolism factors (IGFBP1, NR0B2, PPARA, and POMC). IGFBP1, a core gene in this model, is highly expressed in the C3 subtype. Functionally, knocking down IGFBP1 significantly inhibits tumor cell cloning, scratch, and migration abilities, and downregulates the expression of cell cycle and EMT-related proteins. Knocking down IGFBP1 significantly inhibits tumor burden (P < 0.05). Mechanistically, knocking down IGFBP1 inhibits the activation of PPARα to regulate tumor cell growth. CONCLUSIONS: This study found that lipid metabolism genes are closely related to LUAD, and IGFBP1 may be a key gene in regulating tumor growth and development.

7.
Int J Mol Med ; 54(4)2024 Oct.
Article in English | MEDLINE | ID: mdl-39129313

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fatal pulmonary disease that requires further investigation to understand its pathogenesis. The present study demonstrated that secreted phosphoprotein 1 (SPP1) was aberrantly highly expressed in the lung tissue of patients with IPF and was significantly positively associated with macrophage and T­cell activity. Cell localization studies revealed that SPP1 was primarily overexpressed in macrophages, rather than in T cells. Functionally, knocking down SPP1 expression in vitro inhibited the secretion of fibrosis­related factors and M2 polarization in macrophages. Furthermore, knocking down SPP1 expression inhibited the macrophage­induced epithelial­to­mesenchymal transition in both epithelial and fibroblastic cells. Treatment with SPP1 inhibitors in vivo enhanced lung function and ameliorated pulmonary fibrosis. Mechanistically, SPP1 appears to promote macrophage M2 polarization by regulating the JAK/STAT3 signaling pathway both in vitro and in vivo. In summary, the present study found that SPP1 promotes M2 polarization of macrophages through the JAK2/STAT3 signaling pathway, thereby accelerating the progression of IPF. Inhibition of SPP1 expression in vivo can effectively alleviate the development of IPF, indicating that SPP1 in macrophages may be a potential therapeutic target for IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Janus Kinase 2 , Macrophages , Osteopontin , STAT3 Transcription Factor , Signal Transduction , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Macrophages/metabolism , Humans , Animals , Male , Mice , Osteopontin/metabolism , Osteopontin/genetics , Disease Progression , Epithelial-Mesenchymal Transition/genetics , Female , Mice, Inbred C57BL , Middle Aged
9.
bioRxiv ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39131393

ABSTRACT

There are multiple independent genetic signals at the Ras-responsive element binding protein 1 (RREB1) locus associated with type 2 diabetes risk, fasting glucose, ectopic fat, height, and bone mineral density. We have previously shown that loss of RREB1 in pancreatic beta cells reduces insulin content and impairs islet cell development and function. However, RREB1 is a widely expressed transcription factor and the metabolic impact of RREB1 loss in vivo remains unknown. Here, we show that male and female global heterozygous knockout (Rreb1 +/-) mice have reduced body length, weight, and fat mass on high-fat diet. Rreb1+/- mice have sex- and diet-specific decreases in adipose tissue and adipocyte size; male mice on high-fat diet had larger gonadal adipocytes, while males on standard chow and females on high-fat diet had smaller, more insulin sensitive subcutaneous adipocytes. Mouse and human precursor cells lacking RREB1 have decreased adipogenic gene expression and activated transcription of genes associated with osteoblast differentiation, which was associated with Rreb1 +/- mice having increased bone mineral density in vivo. Finally, human carriers of RREB1 T2D protective alleles have smaller adipocytes, consistent with RREB1 loss-of-function reducing diabetes risk.

10.
Parasit Vectors ; 17(1): 345, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39160635

ABSTRACT

BACKGROUND: Bartonella spp. infect a variety of vertebrates throughout the world, with generally high prevalence. Several Bartonella spp. are known to cause diverse clinical manifestations in humans and have been recognized as emerging pathogens. These bacteria are mainly transmitted by blood-sucking arthropods, such as fleas and lice. The role of ticks in the transmission of Bartonella spp. is unclear. METHODS: A recently developed quadruplex polymerase chain reaction (PCR) amplicon next-generation sequencing approach that targets Bartonella-specific fragments on gltA, ssrA, rpoB, and groEL was applied to test host-seeking Ixodes scapularis ticks (n = 1641; consisting of 886 nymphs and 755 adults) collected in 23 states of the eastern half of the United States and Ixodes pacificus ticks (n = 966; all nymphs) collected in California in the western United States for the presence of Bartonella DNA. These species were selected because they are common human biters and serve as vectors of pathogens causing the greatest number of vector-borne diseases in the United States. RESULTS: No Bartonella DNA was detected in any of the ticks tested by any target. CONCLUSIONS: Owing to the lack of Bartonella detection in a large number of host-seeking Ixodes spp. ticks tested across a broad geographical region, our results strongly suggest that I. scapularis and I. pacificus are unlikely to contribute more than minimally, if at all, to the transmission of Bartonella spp.


Subject(s)
Bartonella Infections , Bartonella , Ixodes , Animals , Ixodes/microbiology , Bartonella/genetics , Bartonella/isolation & purification , United States/epidemiology , Bartonella Infections/transmission , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Nymph/microbiology , Polymerase Chain Reaction , DNA, Bacterial/genetics , Humans , Female , High-Throughput Nucleotide Sequencing
11.
Expert Opin Drug Saf ; : 1-9, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39078338

ABSTRACT

OBJECTIVE: Fostamatinib, an FDA-approved oral small-molecule spleen tyrosine kinase (SYK) inhibitor, is used to treat thrombocytopenia in adults with chronic immune thrombocytopenia (ITP) who have not responded to previous treatments. However, comprehensive safety data is lacking. This study uses the FDA Adverse Event Reporting System (FAERS) database to explore real-world adverse events (AEs) related to fostamatinib, aiming to inform its clinical use. METHODS: The FAERS database was retrospectively queried to extract reports associated with fostamatinib from 2019 to 2023. To identify and evaluate potential AEs in patients receiving fostamatinib, various disproportionality analyses such as the reporting odds ratio (ROR), the proportional reporting ratio (PRR), the Bayesian confidence propagation neural network (BCPNN), and the multi-item gamma Poisson shrinker (MGPS) were employed. RESULTS: A total of 23 AE signals were included in our analysis. Among them, hypertension, blood pressure increase, blood pressure abnormality, hepatic enzyme increase, and diarrhea were consistent with the common AEs described for fostamatinib in clinical trials. In addition, unexpected serious AEs were detected including cerebral thrombosis and necrotizing soft tissue infection. The median time to onset of fostamatinib-related AEs was 86 days. CONCLUSION: Our investigation revealed several possibly emergent safety concerns associated with fostamatinib in real-world clinical practice, which might provide essential vigilance evidence for clinicians and pharmacists to manage the safety issues of fostamatinib.

12.
ACS Nano ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39047084

ABSTRACT

Corneal alkali burns represent a prevalent ophthalmic emergency with the potential to induce blindness. The main contributing mechanisms include excessive inflammation and delayed wound healing. Existing clinical therapies have limitations, promoting the exploration of alternative methods that offer improved efficacy and reduced side effects. Adipose-derived stem cell-exosome (ADSC-Exo) has the potential to sustain immune homeostasis and facilitate tissue regeneration. Nevertheless, natural ADSC-Exo lacks disease specificity and exhibits limited bioavailability on the ocular surface. In this study, we conjugated antitumor necrosis factor-α antibodies (aT) to the surface of ADSC-Exo using matrix metalloproteinase-cleavable peptide chains to create engineered aT-Exo with synergistic effects. In both in vivo and in vitro assessments, aT-Exo demonstrated superior efficacy in mitigating corneal injuries compared to aT alone, unmodified exosomes, or aT simply mixed with exosomes. The cleavable conjugation of aT-Exo notably enhanced wound healing and alleviated inflammation more effectively. Simultaneously, we developed poly(vinyl alcohol) microneedles (MNs) for precise and sustained exosome delivery. The in vivo results showcased the superior therapeutic efficiency of MNs compared with conventional topical administration and subconjunctival injection. Therefore, the bioactive nanodrugs-loaded MNs treatment presents a promising strategy for addressing ocular surface diseases.

13.
J Hazard Mater ; 476: 135149, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38991648

ABSTRACT

Ag nanocomposites (NAs) have been found to induce irreversible harm to pathogenic bacteria, however, NAs tend to aggregate easily when used alone. These nanocomposites also show increased toxicity and their underlying antibacterial mechanism is still unknown. In short, practical applications of NA materials face the following obstacles: elucidating the mechanism of antibacterial action, reducing cytotoxicity to body cells, and enhancing antibacterial activity. This study synthesized a core-shell structured ZnFe2O4 @Cu-ZIF-8 @Ag (FUA) nanocomposite with high antibacterial activity and low cytotoxicity. The nanocomposites achieved a 99.99 % antibacterial rate against Escherichia coli (E. coli) and tetracycline-resistant E. coli (T - E. coli), in under 20 min at 100 µg/mL. The nanocomposites were able to inactivate E. coli due to the gradual release of Cu2+, Zn2+, and Ag+ ions, which synergistically form •OH from FUA in an aerobic environment. The presence of •OH has significant effects on the antibacterial activity. The released metal ions combine with •OH to cause damage to the bacterial cell wall, resulting in the leakage of electrolytes and ions. Moreover, in comparison to NA, the toxicity of FUA is considerably reduced. This study is expected to inspire the development of other silver-based nanocomposite materials for the inactivation of drug-resistant bacteria.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Nanocomposites , Silver , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Nanocomposites/chemistry , Nanocomposites/toxicity , Silver/chemistry , Silver/toxicity , Silver/pharmacology , Copper/chemistry , Copper/toxicity , Copper/pharmacology , Microbial Sensitivity Tests , Zinc/chemistry , Zinc/pharmacology , Animals , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry
14.
ACS Nano ; 18(28): 18758-18768, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38965054

ABSTRACT

Polyanionic cathodes have attracted extensive research interest for Na-ion batteries (NIBs) due to their moderate energy density and desirable cycling stability. However, these compounds suffer from visible capacity fading and significant voltage decay upon the rapid sodium storage process, even if modified through nanoengineering or carbon-coating routes, leading to limited applications in NIBs. Herein, the Na3(VOPO4)2F cathode material with dominantly exposed {001} active facets is demonstrated by a topochemical synthesis route. Owing to the rational geometrical structure design and thereby directly shortening Na diffusion distance, the electrode delivers a reversible capacity of ∼129 mA h g-1 even at a high rate of 10 C, which is very close to the theoretical capacity of 132 mA h g-1, achieving a high energy density of ∼452 W h kg-1 coupled with a high-power density of 4660 W kg-1. When further served as a cathode for nonaqueous, aqueous-based, and solid-state full NIBs, respectively, our designed Na3(VOPO4)2F always enables superior electrochemical performance due to favorable kinetics.

15.
Polymers (Basel) ; 16(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000664

ABSTRACT

Developing biodegradable polyurethane (PU) materials as an alternative to non-degradable petroleum-based PU is a crucial and challenging task. This study utilized lactide as the starting material to synthesize polylactide polyols (PLA-OH). PLA-based polyurethanes (PLA-PUs) were successfully synthesized by introducing PLA-OH into the PU molecular chain. A higher content of PLA-OH in the soft segments resulted in a substantial improvement in the mechanical attributes of the PLA-PUs. This study found that the addition of PLA-OH content significantly improved the tensile stress of the PU from 5.35 MPa to 37.15 MPa and increased the maximum elongation to 820.8%. Additionally, the modulus and toughness of the resulting PLA-PU were also significantly improved with increasing PLA-OH content. Specifically, the PLA-PU with 40% PLA-OH exhibited a high modulus of 33.45 MPa and a toughness of 147.18 MJ m-3. PLA-PU films can be degraded to carbon dioxide and water after 6 months in the soil. This highlights the potential of synthesizing PLA-PU using biomass-renewable polylactide, which is important in green and sustainable chemistry.

16.
J Neuroimmunol ; 394: 578410, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39067241

ABSTRACT

Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is an autoimmune disorder. With the method of indirect immunofluorescence assay (IIF), more anti-NMDAR encephalitis patients have been discovered when its first onset. But it was rare that anti-NMDAR encephalitis overlapped with multiple sclerosis (MS) documented in literatures. Here, we present a case who initially developed anti-NMDAR encephalitis and MS. Furthermore, we concluded the characteristics of patients who were diagnosed as anti-NMDAR encephalitis overlapping with MS. Additionally, due to the relapsing process, mycophenolate mofetil and sequentially fingolimod for the treatment were taken, which subsequently led to the development of a lymphoproliferative disease in his brain and other organs. This case illustrates the complex role of immunosuppressive agents.


Subject(s)
Fingolimod Hydrochloride , Immunosuppressive Agents , Lymphoproliferative Disorders , Mycophenolic Acid , Humans , Fingolimod Hydrochloride/therapeutic use , Fingolimod Hydrochloride/adverse effects , Mycophenolic Acid/therapeutic use , Mycophenolic Acid/adverse effects , Male , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/adverse effects , Lymphoproliferative Disorders/drug therapy , Adult , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/drug therapy , Brain/diagnostic imaging , Brain/pathology , Brain/drug effects , Multiple Sclerosis/drug therapy
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167355, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39009172

ABSTRACT

BACKGROUND: HOIP is the catalytic subunit of the E3 ligase complex (linear ubiquitin chain assembly complex), which is able to generate linear ubiquitin chains. However, the role of rare HOIP functionally deficient variants remains unclear. The pathogenic mechanism and the relationship with immune deficiency phenotypes remain to be clarified. METHODS: Based on a next-generation sequencing panel of 270 genes, we identified a HOIP deletion variant that causes common variable immunodeficiency disease. Bioinformatics analysis and cell-based experiments were performed to study the molecular mechanism by which the variant causes immunodeficiency diseases. FINDINGS: A homozygous loss-of-function variant in HOIP was identified. The variant causes a frameshift and generates a premature termination codon in messenger RNA, resulting in a C-terminal truncated HOIP mutant, that is, the loss of the linear ubiquitin chain-specific catalytic domain. The truncated HOIP mutant has impaired E3 ligase function in linear ubiquitination, leading to the suppression of canonical NF-κB signalling and increased TNF-induced multiple forms of cell death. INTERPRETATION: The loss-of-function HOIP variant accounts for the immune deficiencies. The canonical NF-κB pathway and cell death are involved in the pathogenesis of the disease. FUNDING: This study was funded by the National Natural Science Foundation of China (No. 82270444 and 81501851). RESEARCH IN CONTEXT: Evidence before this study LUBAC is the only known linear ubiquitin chain assembly complex for which HOIP is an essential catalytic subunit. Three HOIP variants have now been identified in two immunodeficient patients and functionally characterised. However, there have been no reports on the pathogenicity of only catalytic domain deletion variants in humans, or the pathogenic mechanisms of catalytic domain deletion variants. Added value of this study We report the first case of an autosomal recessive homozygous deletion variant that results in deletion of the HOIP catalytic structural domain. We demonstrate that this variant is a loss-of-function variant using a heterologous expression system. The variant has impaired E3 ligase function. It can still bind to other subunits of LUBAC, but it fails to generate linear ubiquitin chains. We also explored the underlying mechanisms by which this variant leads to immunodeficiency. The variant attenuates the canonical NF-κB and MAPK signalling cascades and increases the sensitivity of TNFα-induced diverse cell death and activation of mitochondrial apoptosis pathways. These findings provide support for the treatment and drug development of patients with inborn errors of immunity in HOIP and related signalling pathways. Implications of all the available evidence First, this study expands the HOIP pathogenic variant database and phenotypic spectrum. Furthermore, studies on the biological functions of pathogenic variants in relation to the NF-κB signalling pathway and cell death provided new understanding into the genetic basis and pathogenesis of HOIP-deficient immune disease, indicating the necessity of HOIP and related signalling pathway variants as diagnostic targets in patients with similar genetic deficiency phenotypes..


Subject(s)
Frameshift Mutation , NF-kappa B , Signal Transduction , Tumor Necrosis Factor-alpha , Ubiquitin-Protein Ligases , Female , Humans , Male , Cell Death/drug effects , Cell Death/genetics , HEK293 Cells , NF-kappa B/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Child , Pedigree
18.
Mar Pollut Bull ; 205: 116559, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852202

ABSTRACT

This study investigated the effect of hydraulic retention time (HRT) on the denitrification performance and microbial composition of reactors, packed with composite polycaprolactone and corncob carbon sources, during the treatment mariculture wastewater. The optimal HRT was 3 h, and average nitrogen removal efficiency was 99.00 %, 99.07 %, and 98.98 % in the HRT =3, 5, and 7 h groups, respectively. However, the 3 h group (DOC 2.91 mg/L) was the only group with a lower DOC concentration than that of the influent group (3.31 mg/L). Moreover, species richness was lower at HRT =3 h, with a greater proportion of denitrification-dominant phyla, such as Proteobacteria. The abundance of the NarG, NirK, and NirS functional genes suggested that the HRT =3 h group had a significant advantage in the nitrate and nitrite reduction phases. Under a short HRT, the composite carbon source achieved a good denitrification effect.


Subject(s)
Bioreactors , Denitrification , Polyesters , Polyesters/metabolism , Zea mays , Microbiota , Wastewater/chemistry , Waste Disposal, Fluid/methods , Nitrogen , Nitrates
19.
Int J Biol Macromol ; 274(Pt 1): 133327, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908620

ABSTRACT

Adding natural bioactive ingredients to yogurt can improve the nutritional and physiological benefits. In this study, we used ultrasonic-assisted phlorotannin from Ascophyllum nodosum (A. nodosum) modified phycocyanin (PC) to form a complex (UPP) to produce a fortified fermented yogurt. The effects of PC and UPP on the structure, stability, and function of fermented yogurt within 7 days were assessed using physicochemical properties, texture analysis, rheological testing, 16S rDNA sequencing analysis, and lipidomics analysis. Molecular docking indicated that PC might bind to phlorotannin via ARG-77, ARG-84, LEU-120, ALA-81, CYS-82, and ASP-85 sites.When the mass ratio of the complex is 1:1, the ability of UPP1:1 to remove DPPH· scavenging ability in an acid environment increased by about 50 %. UPP1:1 with more acid stability changed the microstructure of the yogurt, enhanced the stability of the yogurt, improved the antioxidant properties, and inhibited the growth of harmful bacteria within 7 days. This work encouraged the extraction and use of phlorotannin from edible brown algae and offered a straightforward method for making yogurt supplemented with PC.


Subject(s)
Antioxidants , Phycocyanin , Tannins , Yogurt , Yogurt/microbiology , Phycocyanin/chemistry , Tannins/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Molecular Docking Simulation , Fermentation , Ascophyllum/chemistry , Rheology
20.
Genes (Basel) ; 15(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927603

ABSTRACT

With the rising cost of animal feed protein, finding affordable and effective substitutes is crucial. Walnut kernel cake, a polyphenol-, fiber-, protein- and fat-rich byproduct of walnut oil extraction, has been underexplored as a potential protein replacement in pig feed. In this study, we found that feeding large Diqing Tibetan pigs walnut kernel cake promoted adipose deposition and improved pork quality during pig growth. Transcriptome analysis revealed the upregulation of genes ANGPTL8, CCNP, ETV4, and TRIB3, associated with adipose deposition. Pathway analysis highlighted enrichment in adipose deposition-related pathways, including PPAR, insulin, PI3K-Akt, Wnt, and MAPK signaling. Further analysis identified DEGs (differentially expressed genes) positively correlated with adipose-related traits, such as PER2 and PTGES. Single-cell transcriptome data pointed to the specific expression of CD248 and PTGES in adipocyte progenitor/stem cells (APSCs), pivotal for adipocyte differentiation and adipose deposition regulation. This study demonstrates walnut kernel cake's potential to substitute soybean cake in pig feed, providing high-quality protein and promoting adipose deposition. It offers insights into feed protein replacement, human functional food, fat metabolism, and related diseases, with marker genes and pathways supporting pig breeding and pork quality improvement.


Subject(s)
Animal Feed , Juglans , Transcriptome , Animals , Juglans/genetics , Juglans/metabolism , Swine/genetics , Animal Feed/analysis , Adipose Tissue/metabolism , Gene Expression Profiling/methods , Adipocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL