Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Alzheimers Dement ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38955137

ABSTRACT

INTRODUCTION: The recent introduction of seed amplification assays (SAAs) detecting misfolded α-synuclein, a pathology-specific marker for Lewy body disease (LBD), has allowed the in vivo identification and phenotypic characterization of patients with co-occurring Alzheimer's disease (AD) and LBD since the early clinical or even preclinical stage. METHODS: We reviewed studies with an in vivo biomarker-based diagnosis of AD-LBD copathology. RESULTS: Studies in large cohorts of cognitively impaired individuals have shown that cerebrospinal fluid (CSF) biomarkers detect the coexistence of AD and LB pathology in approximately 20%-25% of them, independently of the primary clinical diagnosis. Compared to those with pure AD, AD-LBD patients showed worse global cognition, especially in attentive/executive and visuospatial functions, and worse motor functions. In cognitively unimpaired individuals, concurrent AD-LBD pathologies predicted longitudinal cognitive progression with faster worsening of global cognition, memory, and attentive/executive functions. DISCUSSION: Future research studies aiming for a better precision medicine approach should develop SAAs further to reach a quantitative evaluation or staging of each underlying pathology using a single biofluid sample. HIGHLIGHTS: α-Synuclein seed amplification assays (SAAs) provide a specific marker for Lewy body disease (LBD). SAAs allow for the in vivo identification of co-occurring LBD in patients with Alzheimer's disease (AD). AD-LBD coexist in 20-25% of cognitively impaired elderly individuals, and ∼8% of those asymptomatic. Compared to pure AD, AD-LBD causes a faster worsening of cognitive functions. AD-LBD is associated with worse attentive/executive, memory, visuospatial and motor functions.

2.
JAMA Neurol ; 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39068668

ABSTRACT

Importance: The lack of an in vivo measure for α-synuclein (α-syn) pathology until recently has limited thorough characterization of its brain atrophy pattern, especially during early disease stages. Objective: To assess the association of state-of-the-art cerebrospinal fluid (CSF) seed amplification assays (SAA) α-syn positivity (SAA α-syn+) with magnetic resonance imaging (MRI) structural measures, across the continuum from clinically unimpaired (CU) to cognitively impaired (CI) individuals, in 3 independent cohorts, and separately in CU and CI individuals, the latter reflecting a memory clinic population. Design, Setting, and Participants: Cross-sectional data were used from the Swedish BioFINDER-2 study (inclusion, 2017-2023) as the discovery cohort and the Swedish BioFINDER-1 study (inclusion, 2007-2015) and Alzheimer's Disease Neuroimaging Initiative (ADNI; inclusion 2005-2022) as replication cohorts. All cohorts are from multicenter studies, but the BioFINDER cohorts used 1 MRI scanner. CU and CI individuals fulfilling inclusion criteria and without missing data points in relevant metrics were included in the study. All analyses were performed from 2023 to 2024. Exposures: Presence of α-syn pathology, estimated by baseline CSF SAA α-syn. Main Outcomes and Measures: The primary outcomes were cross-sectional structural MRI measures either through voxel-based morphometry (VBM) or regions of interest (ROI) including an automated pipeline for cholinergic basal forebrain nuclei CH4/4p (nucleus basalis of Meynert [NBM]) and CH1/2/3. Secondary outcomes were domain-specific cross-sectional cognitive measures. Analyses were adjusted for CSF biomarkers of Alzheimer pathology. Results: A total of 2961 participants were included in this study: 1388 (mean [SD] age, 71 [10] years; 702 female [51%]) from the BioFINDER-2 study, 752 (mean [SD] age, 72 [6] years; 406 female [54%]) from the BioFINDER-1 study, and 821 (mean [SD] age, 75 [8] years; 449 male [55%]) from ADNI. In the BioFINDER-2 study, VBM analyses in the whole cohort revealed a specific association between SAA α-syn+ and the cholinergic NBM, even when adjusting for Alzheimer copathology. ROI-based analyses in the BioFINDER-2 study focused on regions involved in the cholinergic system and confirmed that SAA α-syn+ was indeed independently associated with smaller NBM (ß = -0.271; 95% CI, -0.399 to -0.142; P <.001) and CH1/2/3 volumes (ß = -0.227; 95% CI, -0.377 to -0.076; P =.02). SAA α-syn+ was also independently associated with smaller NBM volumes in the separate CU (ß = -0.360; 95% CI, -0.603 to -0.117; P =.03) and CI (ß = -0.251; 95% CI, -0.408 to -0.095; P =.02) groups. Overall, the association between SAA α-syn+ and NBM volume was replicated in the BioFINDER-1 study and ADNI cohort. In CI individuals, NBM volumes partially mediated the association of SAA α-syn+ with attention/executive impairments in all cohorts (BioFINDER-2, ß = -0.017; proportion-mediated effect, 7%; P =.04; BioFINDER-1, ß = -0.096; proportion-mediated effect, 19%; P =.04; ADNI, ß = -0.061; proportion-mediated effect, 20%; P =.007). Conclusions and Relevance: In this cohort study, SAA α-syn+ was consistently associated with NBM atrophy already during asymptomatic stages. Further, in memory clinic CI populations, SAA α-syn+ was associated with NBM atrophy, which partially mediated α-syn-induced attention/executive impairment.

3.
Int J Mol Sci ; 25(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38791145

ABSTRACT

The diagnostic and prognostic value of plasma glial fibrillary acidic protein (pl-GFAP) in sporadic Creutzfeldt-Jakob disease (sCJD) has never been assessed in the clinical setting of rapidly progressive dementia (RPD). Using commercially available immunoassays, we assayed the plasma levels of GFAP, tau (pl-tau), and neurofilament light chain (pl-NfL) and the CSF total tau (t-tau), 14-3-3, NfL, phospho-tau181 (p-tau), and amyloid-beta isoforms 42 (Aß42) and 40 (Aß40) in sCJD (n = 132) and non-prion RPD (np-RPD) (n = 94) patients, and healthy controls (HC) (n = 54). We also measured the CSF GFAP in 67 sCJD patients. Pl-GFAP was significantly elevated in the sCJD compared to the np-RPD and HC groups and affected by the sCJD subtype. Its diagnostic accuracy (area under the curve (AUC) 0.760) in discriminating sCJD from np-RPD was higher than the plasma and CSF NfL (AUCs of 0.596 and 0.663) but inferior to the 14-3-3, t-tau, and pl-tau (AUCs of 0.875, 0.918, and 0.805). Pl-GFAP showed no association with sCJD survival after adjusting for known prognostic factors. Additionally, pl-GFAP levels were associated with 14-3-3, pl-tau, and pl-NfL but not with CSF GFAP, Aß42/Aß40, and p-tau. The diagnostic and prognostic value of pl-GFAP is inferior to established neurodegeneration biomarkers. Nonetheless, pl-GFAP noninvasively detects neuroinflammation and neurodegeneration in sCJD, warranting potential applications in disease monitoring.


Subject(s)
Amyloid beta-Peptides , Biomarkers , Creutzfeldt-Jakob Syndrome , Dementia , Glial Fibrillary Acidic Protein , tau Proteins , Humans , Creutzfeldt-Jakob Syndrome/blood , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/cerebrospinal fluid , Female , Male , Glial Fibrillary Acidic Protein/blood , Glial Fibrillary Acidic Protein/cerebrospinal fluid , Aged , Middle Aged , Prognosis , tau Proteins/blood , tau Proteins/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Dementia/blood , Dementia/diagnosis , Dementia/cerebrospinal fluid , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Disease Progression , 14-3-3 Proteins/cerebrospinal fluid , 14-3-3 Proteins/blood
4.
Neurol Sci ; 45(6): 2419-2422, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38578381

ABSTRACT

BACKGROUND: Literature reporting the onset of Creutzfeldt-Jakob disease (CJD) immediately after COVID-19 infection has strengthened a possible causal link between infection and neurodegeneration. Here, we report a novel case undergoing detailed neuropathological assessment. CASE REPORT: Two months after he had contracted SARS-CoV-2 infection, a 54-year-old man manifested a subacute onset of ataxia, headache, anosmia, and hallucinations, followed by rapidly progressive cognitive decline. Electroencephalography documented unspecific slowing with periodic polyphasic delta waves. Brain MRI showed hyperintensities of basal ganglia and thalami on DWI/FLAIR. CSF tested positive for the 14-3-3 protein, and prion seeding activity was demonstrated by the real-time quaking-induced conversion assay. The patient died 2 months after the neurologic onset. The neuropathological examination confirmed the diagnosis of CJD and ruled out COVID-19-related encephalitis. DISCUSSION: To disentangle the link between COVID-19 infection and CJD, neuropathology is essential determining the extent of changes related to both conditions. In our patient, we did not find any specific abnormality related to COVID-19. Our conclusion is in line with the current worldwide epidemiological data that do not show an increase in CJD cases since the beginning of the COVID-19 pandemic.


Subject(s)
COVID-19 , Creutzfeldt-Jakob Syndrome , Humans , Creutzfeldt-Jakob Syndrome/complications , Creutzfeldt-Jakob Syndrome/pathology , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Male , Middle Aged , COVID-19/complications , Fatal Outcome , Brain/pathology , Brain/diagnostic imaging , Electroencephalography , SARS-CoV-2 , Magnetic Resonance Imaging
5.
Alzheimers Dement ; 20(6): 4351-4365, 2024 06.
Article in English | MEDLINE | ID: mdl-38666355

ABSTRACT

INTRODUCTION: Amyloid beta and tau pathology are the hallmarks of sporadic Alzheimer's disease (AD) and autosomal dominant AD (ADAD). However, Lewy body pathology (LBP) is found in ≈ 50% of AD and ADAD brains. METHODS: Using an α-synuclein seed amplification assay (SAA) in cerebrospinal fluid (CSF) from asymptomatic (n = 26) and symptomatic (n = 27) ADAD mutation carriers, including 12 with known neuropathology, we investigated the timing of occurrence and prevalence of SAA positive reactivity in ADAD in vivo. RESULTS: No asymptomatic participant and only 11% (3/27) of the symptomatic patients tested SAA positive. Neuropathology revealed LBP in 10/12 cases, primarily affecting the amygdala or the olfactory areas. In the latter group, only the individual with diffuse LBP reaching the neocortex showed α-synuclein seeding activity in CSF in vivo. DISCUSSION: Results suggest that in ADAD LBP occurs later than AD pathology and often as amygdala- or olfactory-predominant LBP, for which CSF α-synuclein SAA has low sensitivity. HIGHLIGHTS: Cerebrospinal fluid (CSF) real-time quaking-induced conversion (RT-QuIC) detects misfolded α-synuclein in ≈ 10% of symptomatic autosomal dominant Alzheimer's disease (ADAD) patients. CSF RT-QuIC does not detect α-synuclein seeding activity in asymptomatic mutation carriers. Lewy body pathology (LBP) in ADAD mainly occurs as olfactory only or amygdala-predominant variants. LBP develops late in the disease course in ADAD. CSF α-synuclein RT-QuIC has low sensitivity for focal, low-burden LBP.


Subject(s)
Alzheimer Disease , Lewy Bodies , alpha-Synuclein , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/cerebrospinal fluid , alpha-Synuclein/cerebrospinal fluid , alpha-Synuclein/genetics , Female , Male , Middle Aged , Lewy Bodies/pathology , Aged , Mutation , Brain/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Disease Progression
6.
Clin Chem Lab Med ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38456740

ABSTRACT

OBJECTIVES: The effect of preanalytical and analytical factors on the α-synuclein (α-syn) seed amplification assay's (SAA) performance has not been fully explored. Similarly, there is limited knowledge about the most suitable assay protocol and kinetic parameters for misfolded α-syn seed quantification. METHODS: We studied the effect of centrifugation, repeated freeze-thaw cycles (up to seven), delayed freezing, detergent addition, and blood contamination on the performance of the cerebrospinal fluid (CSF) α-syn SAA real-time quaking-induced conversion (RT-QuIC). Moreover, we analysed the inter- and intra-plate variability, the recombinant protein batch effect, and the RT-QuIC parameters' variability when multiple samples were run in controlled conditions. Finally, we evaluated the assay potential of quantifying α-syn seed by assessing kinetic curves in serial CSF dilutions. RESULTS: Among tested preanalytical variables, a ≥0.01 % blood contamination and adding detergents significantly affected the RT-QuIC kinetic parameters and the number of positive replicates. Increasing the number of replicates improved result reproducibility. The number of positive replicates in serially diluted CSF samples improved discrimination between samples with high and low seeding activity, and the time to threshold (LAG) was the most reliable kinetic parameter in multiple experiment settings. CONCLUSIONS: Preanalytical variables affecting α-syn RT-QuIC performance are limited to blood contamination and detergent addition. The number of positive replicates and the LAG are the most reliable variables for quantifying α-syn seeding activity. Their consistent measurement in serial dilution experiments, especially when associated with an increased number of sample replicates, will help to develop the α-syn RT-QuIC assay further into a quantitative test.

7.
Acta Neuropathol ; 147(1): 18, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38240849

ABSTRACT

The development of in vitro seed amplification assays (SAA) detecting misfolded alpha-synuclein (αSyn) in cerebrospinal fluid (CSF) and other tissues has provided a pathology-specific biomarker for Lewy body disease (LBD). However, αSyn SAA diagnostic performance in early pathological stages or low Lewy body (LB) pathology load has only been assessed in small cohorts. Moreover, the relationship between SAA kinetic parameters, the number of αSyn brain seeds and the LB pathology burden assessed by immunohistochemistry has never been systematically investigated. We tested 269 antemortem CSF samples and 138 serially diluted brain homogenates from patients with and without neuropathological evidence of LBD in different stages by the αSyn Real-Time Quaking-Induced Conversion (RT-QuIC) SAA. Moreover, we looked for LB pathology by αSyn immunohistochemistry in a consecutive series of 604 Creutzfeldt-Jakob disease (CJD)-affected brains. αSyn CSF RT-QuIC showed 100% sensitivity in detecting LBD in limbic and neocortical stages. The assay sensitivity was significantly lower in patients in early stages (37.5% in Braak 1 and 2, 73.3% in Braak 3) or with focal pathology (50% in amygdala-predominant). The average number of CSF RT-QuIC positive replicates significantly correlated with LBD stage. Brain homogenate RT-QuIC showed higher sensitivity than immunohistochemistry for the detection of misfolded αSyn. In the latter, the kinetic parameter lag phase (time to reach the positive threshold) strongly correlated with the αSyn seed concentration in serial dilution experiments. Finally, incidental LBD prevalence was 8% in the CJD cohort. The present results indicate that (a) CSF RT-QuIC has high specificity and sufficient sensitivity to detect all patients with LB pathology at Braak stages > 3 and most of those at stage 3; (b) brain deposition of misfolded αSyn precedes the formation of LB and Lewy neurites; (c) αSyn SAA provides "quantitative" information regarding the LB pathology burden, with the lag phase and the number of positive replicates being the most promising variables to be used in the clinical setting.


Subject(s)
Creutzfeldt-Jakob Syndrome , Lewy Body Disease , Humans , Lewy Body Disease/pathology , alpha-Synuclein/metabolism , Sensitivity and Specificity , Creutzfeldt-Jakob Syndrome/pathology , Brain/pathology
8.
NPJ Parkinsons Dis ; 10(1): 24, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38242875

ABSTRACT

Seed amplification assays have been implemented in Parkinson's disease to reveal disease-specific misfolded alpha-synuclein aggregates in biospecimens. While the assays' qualitative dichotomous seeding response is valuable to stratify and enrich cohorts for alpha-synuclein pathology in general, more quantitative parameters that are associated with clinical dynamics of disease progression and that might potentially serve as exploratory outcome measures in clinical trials targeting alpha-synuclein would add important information. To evaluate whether the seeding kinetic parameters time required to reach the seeding threshold (LAG phase), the peak of fluorescence response (Imax), and the area under the curve (AUC) are associated with clinical trajectories, we analyzed LAG, Imax, and AUC in relation to the development of cognitive decline in a longitudinal cohort of 199 people with Parkinson's disease with positive CSF alpha-synuclein seeding status. Patients were stratified into tertiles based on their individual CSF alpha-synuclein seeding kinetic properties. The effect of the kinetic parameters on longitudinal development of cognitive impairment defined by MoCA ≤25 was analyzed by Cox-Regression. Patients with a higher number of positive seeding replicates and tertile groups of shorter LAG, higher Imax, and higher AUC showed a higher prevalence of and a shorter duration until cognitive impairment longitudinally (3, 6, and 3 years earlier with p ≤ 0.001, respectively). Results remained similar in separate subgroup analyses of patients with and without GBA mutation. We conclude that a more prominent alpha-synuclein seeding kinetic profile translates into a more rapid development of cognitive decline.

9.
Alzheimers Dement ; 20(1): 745-751, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37858957

ABSTRACT

INTRODUCTION: Rapidly progressive dementias (RPDs) are a group of neurological disorders characterized by a rapid cognitive decline. The diagnostic value of blood-based biomarkers for Alzheimer's disease (AD) in RPD has not been fully explored. METHODS: We measured plasma brain-derived tau (BD-tau) and p-tau181 in 11 controls, 15 AD patients, and 33 with RPD, of which 19 were Creutzfeldt-Jakob disease (CJD). RESULTS: Plasma BD-tau differentiated AD from RPD and controls (p = 0.002 and p = 0.03, respectively), while plasma and cerebrospinal fluid (CSF) p-tau181 distinguished AD from RPD (p < 0.001) but not controls from RPD (p > 0.05). The correlation of CSF t-tau with plasma BD-tau was stronger (r = 0.78, p < 0.001) than the correlation of CSF and plasma p-tau181 (r = 0.26, p = 0.04). The ratio BD-tau/p-tau181 performed equivalently to the CSF t-tau/p-tau181 ratio, differentiating AD from CJD (p < 0.0001). DISCUSSION: Plasma BD-tau and p-tau181 mimic their corresponding cerebrospinal fluid (CSF) markers. P-tau significantly increased in AD but not in RPD. Plasma BD-tau, like CSF t-tau, increases according to neurodegeneration intensity.


Subject(s)
Alzheimer Disease , Creutzfeldt-Jakob Syndrome , Humans , Alzheimer Disease/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/cerebrospinal fluid , Brain , Biomarkers/cerebrospinal fluid , Diagnosis, Differential , Amyloid beta-Peptides/cerebrospinal fluid
10.
Sleep Med ; 113: 41-48, 2024 01.
Article in English | MEDLINE | ID: mdl-37984016

ABSTRACT

OBJECTIVE: to prospectively assess sleep and sleep disorders during pregnancy and postpartum in a large cohort of women. METHODS: multicenter prospective Life-ON study, recruiting consecutive pregnant women at a gestational age between 10 and 15 weeks, from the local gynecological departments. The study included home polysomnography performed between the 23rd and 25th week of pregnancy and sleep-related questionnaires at 9 points in time during pregnancy and 6 months postpartum. RESULTS: 439 pregnant women (mean age 33.7 ± 4.2 yrs) were enrolled. Poor quality of sleep was reported by 34% of women in the first trimester of pregnancy, by 46% of women in the third trimester, and by as many as 71% of women in the first month after delivery. A similar trend was seen for insomnia. Excessive daytime sleepiness peaked in the first trimester (30% of women), and decreased in the third trimester, to 22% of women. Prevalence of restless legs syndrome was 25%, with a peak in the third trimester of pregnancy. Polysomnographic data, available for 353 women, revealed that 24% of women slept less than 6 h, and 30.6% of women had a sleep efficiency below 80%. Sleep-disordered breathing (RDI≥5) had a prevalence of 4.2% and correlated positively with BMI. CONCLUSIONS: The Life-ON study provides the largest polysomnographic dataset coupled with longitudinal subjective assessments of sleep quality in pregnant women to date. Sleep disorders are highly frequent and distributed differently during pregnancy and postpartum. Routine assessment of sleep disturbances in the perinatal period is necessary to improve early detection and clinical management.


Subject(s)
Pregnancy Complications , Sleep Wake Disorders , Pregnancy , Female , Humans , Infant , Adult , Pregnancy Complications/epidemiology , Sleep , Pregnant Women , Postpartum Period , Sleep Wake Disorders/epidemiology , Surveys and Questionnaires
11.
Eur J Neurol ; 31(1): e16068, 2024 01.
Article in English | MEDLINE | ID: mdl-37738529

ABSTRACT

BACKGROUND: Intravascular large B-cell lymphoma (IVLBCL) is a rare extranodal lymphoma that is characterized by the selective growth of neoplastic cells in blood vessels, representing a potentially treatable cause of rapidly progressive dementia (RPD). Given its diverse clinical and instrumental presentation, it is often misdiagnosed with more common RPD causes, for example, Creutzfeldt-Jakob disease (CJD) or vascular dementia. METHODS: This study presents the clinical and histopathological characteristics of four IVLBCL cases that we diagnosed post-mortem over 20 years among over 600 brain samples received as suspected CJD cases at our prion disease reference center. RESULTS: Our patients exhibited various presenting symptoms, including behavioral disturbances, disorientation, and alertness fluctuations. The diagnostic tests performed at the time, including blood work, cerebrospinal fluid (CSF) analyses, electroencephalography, and neuroimaging, yielded nonspecific and occasionally misleading results. Consequently, the patients were repeatedly diagnosed as variably having CJD, epilepsy, vascular dementia, and encephalitis. The stored CSF samples of two patients tested negative at prion real-time quaking-induced conversion (RT-QuIC), which we performed afterwards for research purposes. Neuropathological analysis revealed a differential involvement of various brain areas, with frontotemporal neocortices being the most affected. CONCLUSIONS: Our results confirm the significant clinical and instrumental heterogeneity of IVLBCL. Neuropathological evidence of the preferential involvement of frontotemporal neocortices, potentially conditioning the clinical phenotype, could be relevant to reach an early diagnosis. Finally, given the therapeutic implications of its misdiagnosis with CJD, we emphasize the utility of prion RT-QuIC as a test for ruling out CJD in these patients.


Subject(s)
Creutzfeldt-Jakob Syndrome , Dementia, Vascular , Lymphoma , Nervous System Diseases , Prion Diseases , Prions , Humans , Dementia, Vascular/diagnosis , Dementia, Vascular/etiology , Creutzfeldt-Jakob Syndrome/complications , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/genetics , Prions/cerebrospinal fluid
12.
Alzheimers Res Ther ; 15(1): 150, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684653

ABSTRACT

BACKGROUND: The levels of synaptic markers synaptosomal-associated protein 25 (SNAP-25) and neurogranin (Ng) have been shown to increase early in the cerebrospinal fluid (CSF) of patients with Creutzfeldt-Jakob disease (CJD) and to have prognostic potential. However, no validation studies assessed these biomarkers' diagnostic and prognostic value in a large clinical setting cohort of rapidly progressive dementia. METHODS: In this retrospective study, using commercially available immunoassays, we measured the levels of SNAP-25, Ng, 14-3-3, total-tau (t-tau), neurofilament light chain (NfL), and phospho-tau181 (p-tau) in CSF samples from consecutive patients with CJD (n = 220) or non-prion rapidly progressive dementia (np-RPD) (n = 213). We evaluated and compared the diagnostic accuracy of each CSF biomarker and biomarker combination by receiver operating characteristics curve (ROC) analyses, studied SNAP-25 and Ng CSF concentrations distribution across CJD subtypes, and estimated their association with survival using multivariable Cox regression analyses. RESULTS: CSF SNAP-25 and Ng levels were higher in CJD than in np-RPD (SNAP-25: 582, 95% CI 240-1250 vs. 115, 95% CI 78-157 pg/ml, p < 0.0001; Ng: 841, 95% CI 411-1473 vs. 390, 95% CI 260-766 pg/ml, p < 0.001). SNAP-25 diagnostic accuracy (AUC 0.902, 95% CI 0.873-0.931) exceeded that of 14-3-3 (AUC 0.853, 95% CI 0.816-0.889), t-tau (AUC 0.878, 95% CI 0.845-0.901), and the t-tau/p-tau ratio (AUC 0.884, 95% CI 0.851-0.916). In contrast, Ng performed worse (AUC 0.697, 95% CI 0.626-0.767) than all other surrogate biomarkers, except for NfL (AUC 0.649, 95% CI 0.593-0.705). SNAP-25 maintained a relatively high diagnostic value even for atypical CJD subtypes (AUC 0.792, 95% CI 0.729-0.854). In Cox regression analyses, SNAP-25 levels were significantly associated with survival in CJD (hazard ratio [HR] 1.71 95% CI 1.40-2.09). Conversely, Ng was associated with survival only in the most rapidly progressive CJD subtypes (sCJD MM(V)1 and gCJD M1) (HR 1.81 95% CI 1.21-2.93). CONCLUSIONS: In the clinical setting, CSF SNAP-25 is a viable alternative to t-tau, 14-3-3, and the t-tau/p-tau ratio in discriminating the CJD subtypes from other RPDs. Additionally, SNAP-25 and, to a lesser extent, Ng predict survival in CJD, showing prognostic power in the range of CSF t-tau/14-3-3 and NfL, respectively.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prions , Humans , Creutzfeldt-Jakob Syndrome/diagnosis , Neurogranin , Prognosis , Synaptosomal-Associated Protein 25 , Retrospective Studies
13.
Int J Mol Sci ; 24(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37762278

ABSTRACT

Recent studies reported increased plasma glial acidic fibrillary protein (GFAP) levels in amyotrophic lateral sclerosis (ALS) patients compared to controls. We expanded these findings in a larger cohort, including 156 ALS patients and 48 controls, and investigated the associations of plasma GFAP with clinical variables and other biofluid biomarkers. Plasma GFAP and Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers were assessed by the single molecule array and the Lumipulse platforms, respectively. In ALS patients, plasma GFAP was higher than in controls (p < 0.001) and associated with measures of cognitive decline. Twenty ALS patients (12.8%) showed a positive amyloid status (A+), of which nine also exhibited tau pathology (A+T+, namely ALS-AD). ALS-AD patients showed higher plasma GFAP than A- ALS participants (p < 0.001) and controls (p < 0.001), whereas the comparison between A- ALS and controls missed statistical significance (p = 0.07). Plasma GFAP distinguished ALS-AD subjects more accurately (area under the curve (AUC) 0.932 ± 0.027) than plasma p-tau181 (AUC 0.692 ± 0.058, p < 0.0001) and plasma neurofilament light chain protein (AUC, 0.548 ± 0.088, p < 0.0001). Cognitive measures differed between ALS-AD and other ALS patients. AD co-pathology deeply affects plasma GFAP values in ALS patients. Plasma GFAP is an accurate biomarker for identifying AD co-pathology in ALS, which can influence the cognitive phenotype.

14.
Ann Clin Transl Neurol ; 10(10): 1904-1909, 2023 10.
Article in English | MEDLINE | ID: mdl-37553789

ABSTRACT

Beta-synuclein is a promising cerebrospinal fluid and blood biomarker of synaptic damage. Here we analysed its accuracy in the discrimination between sporadic Creutzfeldt-Jakob disease (n = 150) and non-prion rapidly progressive dementias (n = 106). In cerebrospinal fluid, beta-synuclein performed better than protein 14-3-3 (AUC 0.95 vs. 0.89) and, to a lesser extent, than total tau (AUC 0.92). Further, the diagnostic value of plasma beta-synuclein (AUC 0.91) outperformed that of plasma tau (AUC 0.79) and neurofilament light chain protein (AUC 0.65) and was comparable to that of cerebrospinal fluid biomarkers. Beta-synuclein might represent the first highly accurate blood biomarker for the diagnosis of sporadic Creutzfeldt-Jakob disease.


Subject(s)
Creutzfeldt-Jakob Syndrome , Humans , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/cerebrospinal fluid , beta-Synuclein , 14-3-3 Proteins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid
15.
Nat Med ; 29(8): 1964-1970, 2023 08.
Article in English | MEDLINE | ID: mdl-37464058

ABSTRACT

There is poor knowledge about the clinical effects of Lewy body (LB) pathology in patients with cognitive impairment, especially when coexisting with Alzheimer's disease (AD) pathology (amyloid-ß and tau). Using a seed amplification assay, we analyzed cerebrospinal fluid for misfolded LB-associated α-synuclein in 883 memory clinic patients with mild cognitive impairment or dementia from the BioFINDER study. Twenty-three percent had LB pathology, of which only 21% fulfilled clinical criteria of Parkinson's disease or dementia with Lewy bodies at baseline. Among these LB-positive patients, 48% had AD pathology. Fifty-four percent had AD pathology in the whole sample (17% of mild cognitive impairment and 24% of patients with dementia were also LB-positive). When examining independent cross-sectional effects, LB pathology but not amyloid-ß or tau, was associated with hallucinations and worse attention/executive, visuospatial and motor function. LB pathology was also associated with faster longitudinal decline in all examined cognitive functions, independent of amyloid-ß, tau, cognitive stage and a baseline diagnosis of dementia with Lewy bodies/Parkinson's disease. LB status provides a better precision-medicine approach to predict clinical trajectories independent of AD biomarkers and a clinical diagnosis, which could have implications for the clinical management of cognitive impairment and the design of AD and LB drug trials.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Lewy Body Disease , Parkinson Disease , Humans , Lewy Bodies/pathology , Lewy Body Disease/diagnosis , Lewy Body Disease/pathology , Parkinson Disease/pathology , Cross-Sectional Studies , Alzheimer Disease/pathology , Cognitive Dysfunction/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid
16.
Nat Med ; 29(8): 1971-1978, 2023 08.
Article in English | MEDLINE | ID: mdl-37464059

ABSTRACT

α-Synuclein aggregates constitute the pathology of Lewy body (LB) disease. Little is known about the effects of LB pathology in preclinical (presymptomatic) individuals, either as isolated pathology or coexisting with Alzheimer's disease (AD) pathology (ß-amyloid (Aß) and tau). We examined the effects of LB pathology using a cerebrospinal fluid α-synuclein-seed amplification assay in 1,182 cognitively and neurologically unimpaired participants from the BioFINDER study: 8% were LB positive, 26% Aß positive (13% of those were LB positive) and 16% tau positive. LB positivity occurred more often in the presence of Aß positivity but not tau positivity. LB pathology had independently negative effects on cross-sectional and longitudinal global cognition and memory and on longitudinal attention/executive function. Tau had cognitive effects of a similar magnitude, but these were less pronounced for Aß. Participants with both LB and AD (Aß and tau) pathology exhibited faster cognitive decline than those with only LB or AD pathology. LB, but not AD, pathology was associated with reduced sense of smell. Only LB-positive participants progressed to clinical LB disease over 10 years. These results are important for individualized prognosis, recruitment and choice of outcome measures in preclinical LB disease trials, but also for the design of early AD trials because >10% of individuals with preclinical AD have coexisting LB pathology.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Lewy Body Disease , Humans , alpha-Synuclein , Lewy Bodies/pathology , tau Proteins/cerebrospinal fluid , Cross-Sectional Studies , Alzheimer Disease/pathology , Lewy Body Disease/cerebrospinal fluid , Lewy Body Disease/complications , Lewy Body Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Cognition , Cognitive Dysfunction/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Positron-Emission Tomography
17.
Expert Opin Ther Targets ; 27(12): 1271-1284, 2023.
Article in English | MEDLINE | ID: mdl-37334903

ABSTRACT

INTRODUCTION: Human prion diseases are heterogeneous, and often rapidly progressive, transmissible neurodegenerative disorders associated with misfolded prion protein (PrP) aggregation and self-propagation. Despite their rarity, prion diseases comprise a broad spectrum of phenotypic variants determined at the molecular level by different conformers of misfolded PrP and host genotype variability. Moreover, they uniquely occur in idiopathic, genetically determined, and acquired forms with distinct etiologies. AREA COVERED: This review provides an up-to-date overview of potential therapeutic targets in prion diseases and the main results obtained in cell and animal models and human trials. The open issues and challenges associated with developing effective therapies and informative clinical trials are also discussed. EXPERT OPINION: Currently tested therapeutic strategies target the cellular PrP to prevent the formation of misfolded PrP or to favor its elimination. Among them, passive immunization and gene therapy with antisense oligonucleotides against prion protein mRNA are the most promising. However, the disease's rarity, heterogeneity, and rapid progression profoundly frustrate the successful undertaking of well-powered therapeutic trials and patient identification in the asymptomatic or early stage before the development of significant brain damage. Thus, the most promising therapeutic goal to date is preventing or delaying phenoconversion in carriers of pathogenic mutations by lowering prion protein expression.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Animals , Humans , Creutzfeldt-Jakob Syndrome/genetics , Creutzfeldt-Jakob Syndrome/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Prion Proteins/genetics , Prion Diseases/genetics , Prion Diseases/therapy , Prions/genetics , Prions/metabolism
18.
J Neurol Neurosurg Psychiatry ; 94(6): 428-435, 2023 06.
Article in English | MEDLINE | ID: mdl-37012065

ABSTRACT

BACKGROUND: Phosphorylated-tau181 (p-tau181), a specific marker of Alzheimer's disease (AD) pathology, was found elevated in plasma but not in cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS). We expanded these findings in a larger patient cohort, exploring clinical/electrophysiological associations, prognostic value and longitudinal trajectories of the biomarker. METHODS: We obtained baseline plasma samples from 148 ALS, 12 spinal muscular atrophy (SMA), and 88 AD patients, and 60 healthy controls. Baseline CSF and longitudinal plasma samples were from 130 and 39 patients with ALS. CSF AD markers were measured with the Lumipulse platform, and plasma p-tau181 with SiMoA. RESULTS: Patients with ALS showed higher plasma p-tau181 levels than controls (p<0.001) and lower than AD participants (p=0.02). SMA patients had higher levels than controls (p=0.03). In patients with ALS, CSF p-tau and plasma p-tau181 did not correlate (p=0.37). Plasma p-tau181 significantly increased with the number of regions showing clinical/neurophysiological lower motor neurons (LMN) signs (p=0.007) and correlated with the degree of denervation in the lumbosacral area (r=0.51, p<0.0001). Plasma p-tau181 levels were higher in classic and LMN-predominant than in bulbar phenotype (p=0.004 and p=0.006). Multivariate Cox regression confirmed plasma p-tau181 as an independent prognostic factor in ALS (HR 1.90, 95% CI 1.25 to 2.90, p=0.003). Longitudinal analysis showed a significant rise in plasma p-tau181 values over time, especially in fast progressors. CONCLUSIONS: Plasma p-tau181 is elevated in patients with ALS, independently from CSF levels, and is firmly associated with LMN dysfunction. The finding indicates that p-tau181 of putative peripheral origin might represent a confounding factor in using plasma p-tau181 for AD pathology screening, which deserves further investigation.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Humans , Alzheimer Disease/diagnosis , tau Proteins/cerebrospinal fluid , Prognosis , Biomarkers/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid
19.
Neurology ; 100(18): e1944-e1954, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36931726

ABSTRACT

BACKGROUND AND OBJECTIVES: Real-time quaking-induced conversion (RT-QuIC) assay detects misfolded α-synuclein (AS) in the skin and CSF of patients with the synucleinopathies Parkinson disease and dementia with Lewy bodies. Isolated REM sleep behavior disorder (IRBD) constitutes the prodromal stage of these synucleinopathies. We aimed to compare the ability of RT-QuIC to identify AS in the skin and CSF of patients with IRBD. METHODS: This was a cross-sectional study where consecutive patients with polysomnographic-confirmed IRBD and age-matched controls without RBD underwent skin biopsy and lumbar puncture the same day. Three-millimeter skin punch biopsies were obtained bilaterally in the cervical region from dorsal C7 and C8 dermatomes and in distal legs. RT-QuIC assessed AS in these 6 skin sites and the CSF. RESULTS: We recruited 91 patients with IRBD and 41 controls. In the skin, sensitivity to detect AS was 76.9% (95% CI 66.9-85.1), specificity 97.6% (95% CI 87.1-99.9) positive predictive value 98.6% (95% CI 91.0-99.8), negative predictive value 65.6% (95% CI 56.6-73.6), and accuracy 83.3% (95% CI 75.9-89.3). In the CSF, the sensitivity was 75.0% (95% CI 64.6-83.6), the specificity was 97.5% (95% CI 86.8-99.9), the positive predictive value was 98.5% (95% CI 90.5-99.8), the negative predictive value was 63.9% (95% CI 55.2-71.9), and the accuracy was 82.0% (95% CI 74.3-88.3). Results in the skin and CSF samples showed 99.2% agreement. Compared with negative patients, RT-QuIC AS-positive patients had a higher likelihood ratio of prodromal Parkinson disease (p < 0.001) and showed more frequently hyposmia (p < 0.001), dopamine transporter imaging single-photon emission CT deficit (p = 0.002), and orthostatic hypotension (p = 0.014). No severe or moderate adverse effects were reported. There was no difference between the percentage of participants reporting mild adverse events secondary to skin biopsy or lumbar puncture (9.1% vs 17.2%; p = 0.053). One hundred and ten (83%) and 104 (80%) participants, respectively, stated they would accept to undergo skin biopsy and lumbar puncture again for research purposes. DISCUSSION: Our study in IRBD shows that (1) RT-QuIC detects AS in the skin and CSF with similar high sensitivity, specificity, and agreement, (2) AS RT-QuIC positivity is associated with supportive features and biomarkers of synucleinopathy, and (3) skin punch biopsy and lumbar puncture have comparable mild adverse effects, tolerance, and acceptance. RT-QuIC in the skin or CSF might represent a patient selection strategy for future neuroprotective trials targeting AS in IRBD. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that RT-QuIC-detected AS in the skin and CSF distinguishes patients with IRBD from controls.


Subject(s)
Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , alpha-Synuclein , Synucleinopathies/diagnosis , REM Sleep Behavior Disorder/diagnosis , Cross-Sectional Studies
20.
Brain ; 146(8): 3289-3300, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36883639

ABSTRACT

The current classification of sporadic Creutzfeldt-Jakob disease identifies six major subtypes mainly defined by the combination of the genotype at polymorphic codon 129 (methionine/M or valine/V) of the prion protein gene and the type (1 or 2) of misfolded prion protein accumulating in the brain (e.g. MM1, MM2, MV1, MV2, etc.). Here, we systematically characterized the clinical and histo-molecular features associated with the third prevalent subtype, the MV2 subtype with kuru plaques (MV2K), in the most extensive series collected to date. We evaluated neurological histories, cerebrospinal biomarkers, brain MRI and EEG results in 126 patients. The histo-molecular assessment included misfolded prion protein typing, standard histologic staining and immunohistochemistry for prion protein in several brain areas. We also investigated the prevalence and topographic extent of coexisting MV2-cortical features, the number of cerebellar kuru plaques and their effect on clinical phenotype. Systematic regional typing revealed a western blot profile of misfolded prion protein comprising a doublet of 19 and 20 kDa unglycosylated fragments, with the former more prominent in neocortices and the latter in the deep grey nuclei. The 20/19 kDa fragment ratio positively correlated with the number of cerebellar kuru plaques. The mean disease duration was exceedingly longer than in the typical MM1 subtype (18.0 versus 3.4 months). Disease duration correlated positively with the severity of pathologic change and the number of cerebellar kuru plaques. At the onset and early stages, patients manifested prominent, often mixed, cerebellar symptoms and memory loss, variably associated with behavioural/psychiatric and sleep disturbances. The cerebrospinal fluid prion real-time quaking-induced conversion assay was positive in 97.3% of cases, while 14-3-3 protein and total-tau positive tests were 52.6 and 75.9%. Brain diffusion-weighted MRI showed hyperintensity of the striatum, cerebral cortex and thalamus in 81.4, 49.3 and 33.8% of cases, and a typical profile in 92.2%. Mixed histotypes (MV2K + MV2-cortical) showed an abnormal cortical signal more frequently than the pure MV2K (64.7 versus 16.7%, P = 0.007). EEG revealed periodic sharp-wave complexes in only 8.7% of participants. These results further establish MV2K as the most common 'atypical' subtype of sporadic Creutzfeldt-Jakob disease, showing a clinical course that often challenges the early diagnosis. The plaque-type aggregation of the misfolded prion protein accounts for most of the atypical clinical features. Nonetheless, our data strongly suggest that the consistent use of the real-time quaking-induced conversion assay and brain diffusion-weighted MRI allows an accurate early clinical diagnosis in most patients.


Subject(s)
Creutzfeldt-Jakob Syndrome , Kuru , Neocortex , Prions , Humans , Creutzfeldt-Jakob Syndrome/diagnostic imaging , Creutzfeldt-Jakob Syndrome/genetics , Kuru/metabolism , Kuru/pathology , Prion Proteins/genetics , Prion Proteins/metabolism , Brain/pathology , Prions/genetics , Phenotype , Neocortex/pathology
SELECTION OF CITATIONS
SEARCH DETAIL