Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cell Biol ; 25(7): 989-1003, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37386153

ABSTRACT

Fasting triggers diverse physiological adaptations including increases in circulating fatty acids and mitochondrial respiration to facilitate organismal survival. The mechanisms driving mitochondrial adaptations and respiratory sufficiency during fasting remain incompletely understood. Here we show that fasting or lipid availability stimulates mTORC2 activity. Activation of mTORC2 and phosphorylation of its downstream target NDRG1 at serine 336 sustains mitochondrial fission and respiratory sufficiency. Time-lapse imaging shows that NDRG1, but not the phosphorylation-deficient NDRG1Ser336Ala mutant, engages with mitochondria to facilitate fission in control cells, as well as in those lacking DRP1. Using proteomics, a small interfering RNA screen, and epistasis experiments, we show that mTORC2-phosphorylated NDRG1 cooperates with small GTPase CDC42 and effectors and regulators of CDC42 to orchestrate fission. Accordingly, RictorKO, NDRG1Ser336Ala mutants and Cdc42-deficient cells each display mitochondrial phenotypes reminiscent of fission failure. During nutrient surplus, mTOR complexes perform anabolic functions; however, paradoxical reactivation of mTORC2 during fasting unexpectedly drives mitochondrial fission and respiration.


Subject(s)
Mitochondrial Dynamics , TOR Serine-Threonine Kinases , Mechanistic Target of Rapamycin Complex 2/genetics , TOR Serine-Threonine Kinases/metabolism , Carrier Proteins/metabolism , Phosphorylation , Fasting
2.
STAR Protoc ; 2(3): 100730, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34430907

ABSTRACT

Isolation of autophagosomes, autolysosomes, and lysosomes allows mechanistic studies into the pathophysiology of autophagy-a lysosomal quality control pathway. Here, we outline a Nycodenz density gradient ultracentrifugation approach for high-yield isolation of autophagic fractions from mouse liver. These fractions can be used for immunoblotting, transmission electron microscopy, and proteomic and lipidomic analyses. For complete details on the use and execution of this protocol, please refer to Toledo et al. (2018).


Subject(s)
Autophagosomes/chemistry , Cell Extracts/analysis , Centrifugation, Density Gradient/methods , Liver/cytology , Lysosomes/chemistry , Animals , Autophagy/physiology , Cell Extracts/chemistry , Lipidomics , Mice , Mice, Inbred C57BL , Proteome/analysis , Proteome/chemistry , Proteomics
3.
Metallomics ; 12(8): 1208-1219, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32744273

ABSTRACT

Human brain derived neurotrophic factor (BDNF) encodes a protein product consisting of a C-terminal mature domain (mature BDNF) and an N-terminal prodomain, which is an intrinsically disordered protein. A common single nucleotide polymorphism in humans results in a methionine substitution for valine at position 66 of the prodomain, and is associated with memory deficits, depression and anxiety disorders. The BDNF Met66 prodomain, but not the Val66 prodomain, promotes rapid structural remodeling of hippocampal neurons' growth cones and dendritic spines by interacting directly with the SorCS2 receptor. While it has been reported that the Met66 and Val66 prodomains exhibit only modest differences in structural propensities in the apo state, here we show that Val66 and Met66 prodomains differentially bind zinc (Zn). Zn2+ binds with higher affinity and more broadly impacts residues on the Met66 prodomain compared to the Val66 prodomain as shown by NMR and ITC. Zn2+ binding to the Met66 and Val66 prodomains results in distinct conformational and macroscopic differences observed by NMR, light scattering and cryoEM. To determine if Zn2+ mediated conformational change in the Met66 prodomain is required for biological effect, we mutated His40, a Zn2+ binding site, and observed a loss of Met66 prodomain bioactivity. As the His40 site is distant from the known region of the prodomain involved in receptor binding, we suggest that Met66 prodomain bioactivity involves His40 mediated stabilization of the multimeric structure. Our results point to the necessity of a Zn2+-mediated higher order molecular assembly of the Met66 prodomain to mediate neuronal remodeling.


Subject(s)
Brain-Derived Neurotrophic Factor/chemistry , Zinc/chemistry , Binding Sites , Magnetic Resonance Spectroscopy , Nerve Tissue Proteins/chemistry , Protein Binding
5.
Neuron ; 99(1): 163-178.e6, 2018 07 11.
Article in English | MEDLINE | ID: mdl-29909994

ABSTRACT

A human variant in the BDNF gene (Val66Met; rs6265) is associated with impaired fear extinction. Using super-resolution imaging, we demonstrate that the BDNF Met prodomain disassembles dendritic spines and eliminates synapses in hippocampal neurons. In vivo, ventral CA1 (vCA1) hippocampal neurons undergo similar morphological changes dependent on their transient co-expression of a SorCS2/p75NTR receptor complex during peri-adolescence. BDNF Met prodomain infusion into the vCA1 during this developmental time frame reduces dendritic spine density and prelimbic (PL) projections, impairing cued fear extinction. Adolescent BdnfMet/Met mice display similar spine and PL innervation deficits. Using fiber photometry, we found that, in wild-type mice, vCA1 neurons projecting to the PL encode extinction by enhancing neural activity in threat anticipation and rapidly subsiding their response. This adaptation is absent in BDNFMet/Met mice. We conclude that the BDNF Met prodomain renders vCA1-PL projection neurons underdeveloped, preventing their capacity for subsequent circuit modulation necessary for fear extinction. VIDEO ABSTRACT.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , CA1 Region, Hippocampal/pathology , Dendritic Spines/pathology , Extinction, Psychological , Fear , Neurons/pathology , Synapses/pathology , Animals , CA1 Region, Hippocampal/physiopathology , Mice , Polymorphism, Single Nucleotide
6.
Biomol NMR Assign ; 12(1): 43-45, 2018 04.
Article in English | MEDLINE | ID: mdl-28933046

ABSTRACT

Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family of proteins which plays a central role in neuronal survival, growth, plasticity and memory. A single Val66Met variant has been identified in the prodomain of human BDNF that is associated with anxiety, depression and memory disorders. The structural differences within the full-length prodomain Val66 and Met66 isoforms could shed light on the mechanism of action of the Met66 and its impact on the development of neuropsychiatric-associated disorders. In the present study, we report the backbone 1H, 13C, and 15N NMR assignments of both full-length Val66 and Met66 prodomains in the presence of 2 M urea. These conditions were utilized to suppress residual structure and aid subsequent native state structural investigations aimed at mapping and identifying variant-dependent conformational differences under native-state conditions.


Subject(s)
Brain-Derived Neurotrophic Factor/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protein Denaturation/drug effects , Urea/pharmacology , Humans , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...