Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Geroscience ; 45(1): 65-84, 2023 02.
Article in English | MEDLINE | ID: mdl-35622271

ABSTRACT

Aging is characterized by declines in physiological function that increase risk of age-associated diseases and limit healthspan, mediated in part by chronic low-grade inflammation. Interleukin (IL)-37 suppresses inflammation in pathophysiological states but has not been studied in the context of aging in otherwise healthy humans. Thus, we investigated associations between IL-37 and markers of healthspan in 271 young (18-39 years; n = 41), middle-aged (40-64 years; n = 162), and older (65 + years; n = 68) adults free of overt clinical disease. After conducting a thorough validation of AdipoGen's IL-37 ELISA, we found that plasma IL-37 is lower in older adults (young: 339 ± 240, middle-aged: 345 ± 234; older: 258 ± 175 pg/mL; P = 0.048), despite elevations in pro-inflammatory markers. As such, the ratios of circulating IL-37 to pro-inflammatory markers were considerably lower in older adults (e.g., IL-37 to C-reactive protein: young, 888 ± 918 vs. older, 337 ± 293; P = 0.02), indicating impaired IL-37 responsiveness to a pro-inflammatory state with aging and consistent with the notion of immunosenescence. These ratios were related to multiple indicators of healthspan, including positively to cardiorespiratory fitness (P < 0.01) and negatively to markers of adiposity, blood pressure, and blood glucose (all P < 0.05). Lastly, we correlated single-nucleotide polymorphisms (SNPs) in the IL37 and ILR8 (the co-receptor for IL-37) genes and found that variants in IL37 SNPs tended to be associated with blood pressure and adiposity (P = 0.08-0.09) but did not explain inter-individual variability in circulating IL-37 concentrations across age (P ≥ 0.23). Overall, our findings provide novel insights into a possible role of IL-37 in biological aging in humans.


Subject(s)
Aging , Polymorphism, Single Nucleotide , Humans , Aged , Middle Aged , Aging/genetics , Inflammation/genetics , C-Reactive Protein , Interleukins/genetics , Interleukin-1/genetics
2.
Aging Cell ; 20(2): e13309, 2021 02.
Article in English | MEDLINE | ID: mdl-33480151

ABSTRACT

Aging-associated declines in innate and adaptive immune responses are well documented and pose a risk for the growing aging population, which is predicted to comprise greater than 40 percent of the world's population by 2050. Efforts have been made to improve immunity in aged populations; however, safe and effective protocols to accomplish this goal have not been universally established. Aging-associated chronic inflammation is postulated to compromise immunity in aged mice and humans. Interleukin-37 (IL-37) is a potent anti-inflammatory cytokine, and we present data demonstrating that IL-37 gene expression levels in human monocytes significantly decline with age. Furthermore, we demonstrate that transgenic expression of interleukin-37 (IL-37) in aged mice reduces or prevents aging-associated chronic inflammation, splenomegaly, and accumulation of myeloid cells (macrophages and dendritic cells) in the bone marrow and spleen. Additionally, we show that IL-37 expression decreases the surface expression of programmed cell death protein 1 (PD-1) and augments cytokine production from aged T-cells. Improved T-cell function coincided with a youthful restoration of Pdcd1, Lat, and Stat4 gene expression levels in CD4+ T-cells and Lat in CD8+ T-cells when aged mice were treated with recombinant IL-37 (rIL-37) but not control immunoglobin (Control Ig). Importantly, IL-37-mediated rejuvenation of aged endogenous T-cells was also observed in aged chimeric antigen receptor (CAR) T-cells, where improved function significantly extended the survival of mice transplanted with leukemia cells. Collectively, these data demonstrate the potency of IL-37 in boosting the function of aged T-cells and highlight its therapeutic potential to overcome aging-associated immunosenescence.


Subject(s)
Aging , Cell- and Tissue-Based Therapy , Interleukin-1/immunology , Receptors, Chimeric Antigen/immunology , Animals , Cell Line , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic
3.
Aging Cell ; 19(1): e13074, 2020 01.
Article in English | MEDLINE | ID: mdl-31755162

ABSTRACT

Aging is associated with vascular endothelial dysfunction, reduced exercise tolerance, and impaired whole-body glucose metabolism. Interleukin-37 (IL-37), an anti-inflammatory cytokine of the interleukin-1 family, exerts salutary physiological effects in young mice independent of its inflammation-suppressing properties. Here, we assess the efficacy of IL-37 treatment for improving physiological function in older age. Old mice (26-28 months) received daily intraperitoneal injections of recombinant human IL-37 (recIL-37; 1 µg/200 ml PBS) or vehicle (200 ml PBS) for 10-14 days. Vascular endothelial function (ex vivo carotid artery dilation to increasing doses of acetylcholine, ACh) was enhanced in recIL-37 vs. vehicle-treated mice via increased nitric oxide (NO) bioavailability (all p < .05); this effect was accompanied by enhanced ACh-stimulated NO production and reduced levels of reactive oxygen species in endothelial cells cultured with plasma from IL-37-treated animals (p < .05 vs. vehicle plasma). RecIL-37 treatment increased endurance exercise capacity by 2.4-fold, which was accompanied by a 2.9-fold increase in the phosphorylated AMP-activated kinase (AMPK) to AMPK ratio (i.e., AMPK activation) in quadriceps muscle. RecIL-37 treatment also improved whole-body insulin sensitivity and glucose tolerance (p < .05 vs. vehicle). Improvements in physiological function occurred without significant changes in plasma, aortic, and skeletal muscle pro-inflammatory proteins (under resting conditions), whereas pro-/anti-inflammatory IL-6 was greater in recIL-37-treated animals. Plasma metabolomics analysis revealed that recIL-37 treatment altered metabolites related to pathways involved in NO synthesis (e.g., increased L-arginine and citrulline/arginine ratio) and fatty acid metabolism (e.g., increased pantothenol and free fatty acids). Our findings provide experimental support for IL-37 therapy as a novel strategy to improve diverse physiological functions in old age.


Subject(s)
Endothelial Cells/metabolism , Exercise Tolerance/drug effects , Glucose/metabolism , Interleukin-1/therapeutic use , Animals , Humans , Interleukin-1/pharmacology , Male , Mice
4.
Int J Mol Sci ; 19(8)2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30072596

ABSTRACT

The human cytokine interleukin (IL)-37 is an anti-inflammatory member of the IL-1 family of cytokines. Transgenic expression of IL-37 in mice protects them from diet-induced obesity and associated metabolic complications including dyslipidemia, inflammation and insulin resistance. The precise mechanism of action leading to these beneficial metabolic effects is not entirely known. Therefore, we aimed to assess in detail the effect of transgenic IL-37 expression on energy balance, including food intake and energy expenditure. Feeding homozygous IL-37 transgenic mice and wild-type (WT) control mice a high-fat diet (HFD; 45% kcal palm fat) for 6 weeks showed that IL-37 reduced body weight related to a marked decrease in food intake. Subsequent mechanistic studies in mice with heterozygous IL-37 expression versus WT littermates, fed the HFD for 18 weeks, confirmed that IL-37 reduces food intake, which led to a decrease in lean body mass, but did not reduce fat mass and plasma lipid levels or alterations in energy expenditure independent of lean body mass. Taken together, this suggests that IL-37 reduces lean body mass by reducing food intake.


Subject(s)
Body Weight , Eating , Interleukin-1/genetics , Obesity/genetics , Up-Regulation , Animals , Blood Glucose/analysis , Body Composition , Diet, High-Fat/adverse effects , Energy Metabolism , Humans , Lipids/blood , Male , Mice, Inbred C57BL , Mice, Transgenic , Obesity/blood , Obesity/etiology , Obesity/pathology
5.
J Biol Chem ; 293(37): 14224-14236, 2018 09 14.
Article in English | MEDLINE | ID: mdl-30006351

ABSTRACT

Obesity and the metabolic syndrome are characterized by chronic, low-grade inflammation mainly originating from expanding adipose tissue and resulting in inhibition of insulin signaling and disruption of glycemic control. Transgenic mice expressing human interleukin 37 (IL-37), an anti-inflammatory cytokine of the IL-1 family, are protected against metabolic syndrome when fed a high-fat diet (HFD) containing 45% fat. Here, we examined whether treatment with recombinant IL-37 ameliorates established insulin resistance and obesity-induced inflammation. WT mice were fed a HFD for 22 weeks and then treated daily with IL-37 (1 µg/mouse) during the last 2 weeks. Compared with vehicle only-treated mice, IL-37-treated mice exhibited reduced insulin in the plasma and had significant improvements in glucose tolerance and in insulin content of the islets. The IL-37 treatment also increased the levels of circulating IL-1 receptor antagonist. Cultured adipose tissues revealed that IL-37 treatment significantly decreases spontaneous secretions of IL-1ß, tumor necrosis factor α (TNFα), and CXC motif chemokine ligand 1 (CXCL-1). We also fed mice a 60% fat diet with concomitant daily IL-37 for 2 weeks and observed decreased secretion of IL-1ß, TNFα, and IL-6 and reduced intracellular levels of IL-1α in the liver and adipose tissue, along with improved plasma glucose clearance. Compared with vehicle treatment, these IL-37-treated mice had no apparent weight gain. In human adipose tissue cultures, the presence of 50 pm IL-37 reduced spontaneous release of TNFα and 50% of lipopolysaccharide-induced TNFα. These findings indicate that IL-37's anti-inflammatory effects can ameliorate established metabolic disturbances during obesity.


Subject(s)
Adipose Tissue/metabolism , Cytokines/biosynthesis , Inflammation Mediators/metabolism , Insulin Resistance , Interleukin-1/therapeutic use , Metabolic Syndrome/drug therapy , Obesity/physiopathology , Animals , Biomarkers/blood , Diet, High-Fat , Glucose Tolerance Test , Humans , Interleukin-1/genetics , Metabolic Syndrome/metabolism , Metabolic Syndrome/physiopathology , Mice , Mice, Transgenic , Receptors, Interleukin-1 Type I/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/therapeutic use
6.
Obesity (Silver Spring) ; 25(8): 1369-1374, 2017 08.
Article in English | MEDLINE | ID: mdl-28594137

ABSTRACT

OBJECTIVE: To analyze changes in fat cell size, macrophage infiltration, and local adipose tissue adipokine profiles in different fat depots in patients with active Cushing's syndrome. METHODS: Subcutaneous (SC) and perirenal (PR) adipose tissue of 10 patients with Cushing's syndrome was compared to adipose tissue of 10 gender-, age-, and BMI-matched controls with regard to adipocyte size determined by digital image analysis on hematoxylin and eosin stainings, macrophage infiltration determined by digital image analysis on CD68 stainings, and adipose tissue leptin and adiponectin levels using fluorescent bead immunoassays and ELISA techniques. RESULTS: Compared to the controls, mean adipocyte size was larger in PR adipose tissue in patients. The percentage of macrophage infiltration of the PR adipose tissue and PR adipose tissue lysate leptin levels were higher and adiponectin levels were lower in SC and PR adipose tissue lysates in patients. The adiponectin levels were also lower in the SC adipose tissue supernatants of patients. Associations were found between the severity of hypercortisolism and PR adipocyte size. CONCLUSIONS: Cushing's syndrome is associated with hypertrophy of PR adipocytes and a higher percentage of macrophage infiltration in PR adipose tissue. These changes are associated with an adverse local adipokine profile.


Subject(s)
Adipocytes/cytology , Adipokines/blood , Cell Size , Cushing Syndrome/blood , Intra-Abdominal Fat/metabolism , Macrophages/cytology , Adult , Aged , Body Mass Index , Cross-Sectional Studies , Cushing Syndrome/complications , Female , Humans , Hypertrophy/blood , Hypertrophy/complications , Leptin/metabolism , Male , Middle Aged , Young Adult
7.
BMC Med ; 15(1): 39, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28222718

ABSTRACT

BACKGROUND: Human skeletal muscle stem cells are important for muscle regeneration. However, the combined genome-wide DNA methylation and expression changes taking place during adult myogenesis have not been described in detail and novel myogenic factors may be discovered. Additionally, obesity is associated with low relative muscle mass and diminished metabolism. Epigenetic alterations taking place during myogenesis might contribute to these defects. METHODS: We used Infinium HumanMethylation450 BeadChip Kit (Illumina) and HumanHT-12 Expression BeadChip (Illumina) to analyze genome-wide DNA methylation and transcription before versus after differentiation of primary human myoblasts from 14 non-obese and 14 obese individuals. Functional follow-up experiments were performed using siRNA mediated gene silencing in primary human myoblasts and a transgenic mouse model. RESULTS: We observed genome-wide changes in DNA methylation and expression patterns during differentiation of primary human muscle stem cells (myoblasts). We identified epigenetic and transcriptional changes of myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6, PAX7, MEF2A, MEF2C, and MEF2D), cell cycle regulators, metabolic enzymes and genes previously not linked to myogenesis, including IL32, metallothioneins, and pregnancy-specific beta-1-glycoproteins. Functional studies demonstrated IL-32 as a novel target that regulates human myogenesis, insulin sensitivity and ATP levels in muscle cells. Furthermore, IL32 transgenic mice had reduced insulin response and muscle weight. Remarkably, approximately 3.7 times more methylation changes (147,161 versus 39,572) were observed during differentiation of myoblasts from obese versus non-obese subjects. In accordance, DNMT1 expression increased during myogenesis only in obese subjects. Interestingly, numerous genes implicated in metabolic diseases and epigenetic regulation showed differential methylation and expression during differentiation only in obese subjects. CONCLUSIONS: Our study identifies IL-32 as a novel myogenic regulator, provides a comprehensive map of the dynamic epigenome during differentiation of human muscle stem cells and reveals abnormal epigenetic changes in obesity.


Subject(s)
Muscle, Skeletal/physiology , Obesity/genetics , Obesity/pathology , Stem Cells/physiology , Animals , Cell Differentiation/genetics , DNA Methylation , Epigenesis, Genetic , Humans , Mice , Middle Aged , Muscle Development , Muscle, Skeletal/pathology , Stem Cells/pathology
8.
Proc Natl Acad Sci U S A ; 114(7): 1631-1636, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28137840

ABSTRACT

Calcific aortic valve disease is a chronic inflammatory process, and aortic valve interstitial cells (AVICs) from diseased aortic valves express greater levels of osteogenic factors in response to proinflammatory stimulation. Here, we report that lower cellular levels of IL-37 in AVICs of diseased human aortic valves likely account for augmented expression of bone morphogenetic protein-2 (BMP-2) and alkaline phosphatase (ALP) following stimulation of Toll-like receptor (TLR) 2 or 4. Treatment of diseased AVICs with recombinant human IL-37 suppresses the levels of BMP-2 and ALP as well as calcium deposit formation. In mice, aortic valve thickening is observed when exposed to a TLR4 agonist or a high fat diet for a prolonged period; however, mice expressing human IL-37 exhibit significantly lower BMP-2 levels and less aortic valve thickening when subjected to the same regimens. A high fat diet in mice results in oxidized low-density lipoprotein (oxLDL) deposition in aortic valve leaflets. Moreover, the osteogenic responses in human AVICs induced by oxLDL are suppressed by recombinant IL-37. Mechanistically, reduced osteogenic responses to oxLDL in human AVICs are associated with the ability of IL-37 to inhibit NF-κB and ERK1/2. These findings suggest that augmented expression of osteogenic factors in AVICs of diseased aortic valves from humans is at least partly due to a relative IL-37 deficiency. Because recombinant IL-37 suppresses the osteogenic responses in human AVICs and alleviates aortic valve lesions in mice exposed to high fat diet or a proinflammatory stimulus, IL-37 has therapeutic potential for progressive calcific aortic valve disease.


Subject(s)
Aortic Valve Stenosis/prevention & control , Aortic Valve/drug effects , Calcinosis/prevention & control , Interleukins/pharmacology , Osteogenesis/drug effects , Aged , Alkaline Phosphatase/metabolism , Animals , Aortic Valve/metabolism , Aortic Valve/pathology , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/metabolism , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Calcinosis/genetics , Calcinosis/metabolism , Cells, Cultured , Female , Humans , Interleukins/genetics , Interleukins/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Middle Aged , NF-kappa B/metabolism , Recombinant Proteins/pharmacology
9.
Proc Natl Acad Sci U S A ; 114(9): 2313-2318, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28193888

ABSTRACT

IL-1 family member interleukin 37 (IL-37) has broad antiinflammatory properties and functions as a natural suppressor of innate inflammation. In this study, we demonstrate that treatment with recombinant human IL-37 reverses the decrease in exercise performance observed during systemic inflammation. This effect was associated with a decrease in the levels of plasma and muscle cytokines, comparable in extent to that obtained upon IL-1 receptor blockade. Exogenous administration of IL-37 to healthy mice, not subjected to an inflammatory challenge, also improved exercise performance by 82% compared with vehicle-treated mice (P = 0.01). Treatment with eight daily doses of IL-37 resulted in a further 326% increase in endurance running time compared with the performance level of mice receiving vehicle (P = 0.001). These properties required the engagement of the IL-1 decoy receptor 8 (IL-1R8) and the activation of AMP-activated protein kinase (AMPK), because both inhibition of AMPK and IL-1R8 deficiency abrogated the positive effects of IL-37 on exercise performance. Mechanistically, treatment with IL-37 induced marked metabolic changes with higher levels of muscle AMPK, greater rates of oxygen consumption, and increased oxidative phosphorylation. Metabolomic analyses of plasma and muscles of mice treated with IL-37 revealed an increase in AMP/ATP ratio, reduced levels of proinflammatory mediator succinate and oxidative stress-related metabolites, as well as changes in amino acid and purine metabolism. These effects of IL-37 to limit the metabolic costs of chronic inflammation and to foster exercise tolerance provide a rationale for therapeutic use of IL-37 in the treatment of inflammation-mediated fatigue.


Subject(s)
Exercise Tolerance/drug effects , Inflammation/drug therapy , Interleukin-1/pharmacology , Metabolome/drug effects , Muscle, Skeletal/drug effects , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Cell Line , Cell Respiration/drug effects , Exercise Test , Exercise Tolerance/physiology , Gene Expression Regulation , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/pathology , Lipopolysaccharides , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myoblasts/drug effects , Myoblasts/metabolism , Myoblasts/pathology , Oxidative Phosphorylation/drug effects , Physical Conditioning, Animal/physiology , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/metabolism , Recombinant Proteins/pharmacology , Rotarod Performance Test , Running/physiology
10.
Mol Med ; 222016 05 24.
Article in English | MEDLINE | ID: mdl-27261776

ABSTRACT

Activation of inflammatory pathways is known to accompany development of obesity-induced non-alcoholic fatty liver disease (NAFLD), insulin resistance and type 2 diabetes. In addition to caspase-1, the neutrophil serine proteases proteinase 3, neutrophil elastase and cathepsin G are able to process the inactive pro-inflammatory mediators IL-1ß and IL-18 to their bioactive forms, thereby regulating inflammatory responses. In the present study, we investigated whether proteinase 3 is involved in obesity-induced development of insulin resistance and NAFLD. We investigated the development of NAFLD and insulin resistance in mice deficient for neutrophil elastase/proteinase 3 and neutrophil elastase/cathepsin G and in wild-type mice treated with the neutrophil serine proteinase inhibitor human alpha-1 antitrypsin. Expression profiling of metabolically relevant tissues obtained from insulin resistant mice showed that expression of proteinase 3 was specifically upregulated in the liver, whereas neutrophil elastase, cathepsin G and caspase-1 were not. Neutrophil elastase/proteinase 3 deficient mice showed strongly reduced levels of lipids in the liver after fed a high fat diet. Moreover, these mice were resistant to high fat diet-induced weight gain, inflammation and insulin resistance. Injection of proteinase 3 exacerbated insulin resistance in caspase-1(-/-) mice, indicating that proteinase 3 acts independently of caspase-1. Treatment with alpha-1 antitrypsin during the last 10 days of a 16 week high fat diet reduced hepatic lipid content and decreased fasting glucose levels. We conclude that proteinase 3 is involved in NAFLD and insulin resistance and that inhibition of proteinase 3 may have therapeutic potential.


Subject(s)
Insulin Resistance/genetics , Liver/metabolism , Myeloblastin/genetics , Myeloblastin/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Animals , Diet, High-Fat , Disease Models, Animal , Gene Expression Profiling , Humans , Leukocyte Elastase/genetics , Male , Mice , Non-alcoholic Fatty Liver Disease/genetics , Obesity/chemically induced , Obesity/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL