Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(25): 37298-37315, 2024 May.
Article in English | MEDLINE | ID: mdl-38769263

ABSTRACT

Five phyllosilicates (kaolinite, montmorillonite, saponite, sepiolite and palygorskite) have been selected as starting materials for the synthesis of zeolites. Among them, kaolinite and montmorillonite display the lowest Si/Al molar ratio leading to aluminosilicates with high crystallinity. Thus, the hydrothermal treatment under basic conditions forms 4A zeolite when kaolinite is used as starting material while 13X zeolite is obtained when montmorillonite is used as starting material. The microporosity and CO2-adsorption capacity of the prepared zeolites are directly related to its crystallinity. Thus, in order to improve it, raw phyllosilicates were subjected to a microwave-assisted treatment to remove undesired Mg or Fe-species, which have a negative effect in the assembling of the zeolites by hydrothermal basic conditions in a second step. The highest adsorption value was 3.85 mmol/g at 25 °C and 760 mm of Hg for Mont-A-B sample after the consecutive treatments.


Subject(s)
Carbon Dioxide , Zeolites , Zeolites/chemistry , Adsorption , Carbon Dioxide/chemistry , Silicates/chemistry , Bentonite/chemistry
2.
Int J Mol Sci ; 24(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37762341

ABSTRACT

The global demand for energy and industrial growth has generated an exponential use of fossil fuels in recent years. It is well known that carbon dioxide (CO2) is mainly produced, but not only from fuels, which has a negative impact on the environment, such as the increasing emission of greenhouse gases. Thus, thinking about reducing this problem, this study analyzes microwave irradiation as an alternative to conventional heating to optimize zeolite A synthesis conditions for CO2 capture. Synthesis reaction parameters such as different temperatures (60-150 °C) and different time durations (1-6 h) were evaluated. The CO2 adsorption capacity was evaluated by CO2 adsorption-desorption isotherms at 25 °C and atmospheric pressure. The results showed that the synthesis of zeolite A by microwave irradiation was successfully obtained from natural kaolinite (via metakaolinization), reducing both temperature and time. Adsorption isotherms show that the most promising adsorbent for CO2 capture is a zeolite synthesized at 100 °C for 4 h, which reached an adsorption capacity of 2.2 mmol/g.


Subject(s)
Carbon Dioxide , Zeolites , Adsorption , Microwaves , Atmospheric Pressure
3.
Polymers (Basel) ; 14(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36501631

ABSTRACT

Three chitosans with different morphologies have been used (commercial chitosan powder, chitosan in film form and chitosan in globular form synthesized by the freeze-dried method) for the synthesis of biochars. The pyrolytic treatment has revealed that the biochar synthesized from the chitosan formed by the freeze-dried method reaches the highest CO2-adsorption capacity (4.11 mmol/g at 0 °C and a pressure of 1 bar) due to this adsorbent is highly microporous. Moreover, this biochar is more resistant to the pyrolytic treatment in comparison to the biochars obtained from the commercial chitosan and chitosan in the form of film. CO2-adsorption studies at different temperatures have also shown that the adsorption capacity diminishes as the adsorption temperature increases, thus suggesting that the adsorption takes place by a physical process.

4.
Molecules ; 26(2)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477753

ABSTRACT

After the industrial revolution, the increase in the world population and the consumption of fossil fuels has led to an increase in anthropogenic CO2 emissions [...].


Subject(s)
Carbon Dioxide/chemistry , Carbon Dioxide/analysis , Fossil Fuels , Industry
5.
Ind Eng Chem Res ; 60(51): 18831-18840, 2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35264821

ABSTRACT

The effect of adding iron, cobalt or nickel to a prepared niobium-supported catalyst using mesoporous silica SBA-15 as a support was evaluated in the hydrodeoxygenation (HDO) reaction of anisole, chosen as a model compound in lignocellulosic biomass derived bio-oil. HDO activity as well as selectivity toward O-free products were highly dependent on the catalyst formulation: Ni incorporation showed the highest anisole conversion and selectivity to deoxygenated products, followed by Co and Fe counterparts. The activity was explained in terms of acidity, metal surface exposure and reducibility as a function of the interaction between the phases present. Regarding the characterization results, the better performance of NiNb/SBA-15 was associated with its lower acidity, higher Nb/Si surface exposure, NbO2/Nb2O5 ratio and better interaction between Ni and Nb species.

6.
Dalton Trans ; 47(9): 3047-3058, 2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29171853

ABSTRACT

In the present study a porous lamellar zirconium phosphate heterostructure (PPH) formed from zirconium(iv) phosphate expanded with silica galleries (P/Zr molar ratio equal to 2 and (Si + Zr)/P equal to 3) was prepared to host noble metals. Textural and structural characterization of PPH-noble metal materials was carried out in order to elucidate the location and dispersion of the metallic particles and the properties of the resulting material to be used in catalytic processes. In the present paper, their activity in the catalytic hydrodeoxygenation (HDO) reaction of dibenzofuran (DBF) was evaluated. X-ray diffraction (XRD), solid state nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) evidenced that the structure of the pillared zirconium phosphate material was not modified by the incorporation of Pt and Pd. Moreover, transmission electron microscopy (TEM) showed a different dispersion of the noble metal. The acidity of the resulting PPH-noble metal materials also changed, although in all cases the acidity was of weak nature, and the incorporation of noble metals affected Brønsted acid sites as observed from 31P NMR spectra. In general, the textural, structural and acidic properties of the resulting materials suggest that PPH can be considered a good candidate to be used as a catalytic support. Thus, the catalytic results of the PPH-noble metal samples indicated that the Pd sample showed a stable behavior probably ascribed to a high dispersion of the active phase. However, the Pt sample suffered from fast deactivation. The selectivity to the reaction products was strongly dependent on the noble metal employed.

SELECTION OF CITATIONS
SEARCH DETAIL
...