Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38528987

ABSTRACT

The transcription factor Dachshund (Dac) and the transcriptional co-regulator C-terminal Binding Protein (CtBP) were identified as the retinal determination factors during Drosophila eye development . A previous study established that Dac and CtBP interact genetically during eye development. Co-immunoprecipitation assays suggested that both molecules interact in the Drosophila larval eye-antennal disc. Our present study shows that Dac and CtBP bind each other directly, as determined by GST pull-down assays. Thus, our results demonstrate the molecular mechanism of Dac and CtBP interaction and suggest the direct binding of these two transcription regulators in the cells of the eye disc promotes the Drosophila eye specification.

2.
J Appl Genet ; 63(1): 141-144, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34817771

ABSTRACT

The nonhomologous end-joining pathway is a primary DNA double-strand break repair pathway in eukaryotes. DNA ligase IV (Lig4) catalyzes the final step of DNA end ligation in this pathway. Partial loss of Lig4 in mammals causes Lig4 syndrome, while complete loss is embryonically lethal. DNA ligase 4 (DNAlig4) null Drosophila melanogaster is viable, but sensitive to ionizing radiation during early development. We proposed to explore if DNAlig4 loss induced other long-term sensitivities and defects in D. melanogaster. We demonstrated that DNAlig4 mutant strains had decreased lifespan and lower resistance to nutrient deprivation, indicating Lig4 is required for maintaining health and longevity in D. melanogaster.


Subject(s)
Drosophila melanogaster , Longevity , Animals , DNA End-Joining Repair , DNA Ligase ATP/genetics , DNA Ligase ATP/metabolism , DNA Ligases/genetics , DNA Ligases/metabolism , DNA Repair/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Longevity/genetics , Mutation , Nutrients
3.
PLoS One ; 16(9): e0256738, 2021.
Article in English | MEDLINE | ID: mdl-34506510

ABSTRACT

Neurodegenerative disease (ND) is a growing health burden worldwide, but its causes and treatments remain elusive. Although most cases of ND are sporadic, rare familial cases have been attributed to single genes, which can be investigated in animal models. We have generated a new mutation in the calcium-independent phospholipase A2 (iPLA2) VIA gene CG6718, the Drosophila melanogaster ortholog of human PLA2G6/PARK14, mutations in which cause a suite of NDs collectively called PLA2G6-associated neurodegeneration (PLAN). Our mutants display age-related loss of climbing ability, a symptom of neurodegeneration in flies. Although phospholipase activity commonly is presumed to underlie iPLA2-VIA function, locomotor decline in our mutants is rescued by a transgene carrying a serine-to-alanine mutation in the catalytic residue, suggesting that important functional aspects are independent of phospholipase activity. Additionally, we find that iPLA2-VIA knockdown in either muscle or neurons phenocopies locomotor decline with age, demonstrating its necessity in both neuronal and non-neuronal tissues. Furthermore, RNA in situ hybridization shows high endogenous iPLA2-VIA mRNA expression in adult germ cells, and transgenic HA-tagged iPLA2-VIA colocalizes with mitochondria there. Mutant males are fertile with normal spermatogenesis, while fertility is reduced in mutant females. Mutant female germ cells display age-related mitochondrial aggregation, loss of mitochondrial potential, and elevated cell death. These results suggest that iPLA2-VIA is critical for mitochondrial integrity in the Drosophila female germline, which may provide a novel context to investigate its functions with parallels to PLAN.


Subject(s)
Drosophila Proteins , Group X Phospholipases A2 , Muscles , Neurodegenerative Diseases , Neurons , Animals , Animals, Genetically Modified , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Drosophila melanogaster , Female , Germ Cells/metabolism , Germ Cells/pathology , Group X Phospholipases A2/genetics , Group X Phospholipases A2/physiology , Male , Mitochondria/metabolism , Muscles/metabolism , Muscles/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Neurons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL